
Repetition Thresholds in Graphs

Borut Lužar
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Basic Notions

Given an alphabet of k letters

A = {a1, a2, . . . , ak},

a word of length n over A,

w = `1`2 · · · `n,

is a sequence of letters from A,
i.e., `i ∈ A, for every 1 ≤ i ≤ n.

We are interested in consecutive repetitions of subwords or
their parts;
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Basic Notions

A subword or a factor of a word w is a sequence of
consecutive letters in w .

ok is a factor of kokos

A repetition in a word w is a factor consisting of two identical
consecutive factors

kokos banana ananas

A word is non-repetitive if it does not contain a repetition;
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Basic Notions

Thue [18] showed there exist infinite non-repetitive words on 3
letters;

Various constructions exist;

Thue-Morse (0, 1) generator:

start with w0 = 1;
define morphism m as m(0) = 01 and m(1) = 10;
define wi = m(wi−1);
from a word wi we construct a word xi as a sequence of
numbers of zeros between each pair of consecutive ones in wi ;

Example: w6 = 10010110011010010110100110010110

x6 = 210201210120210
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Basic Notions

What if there are several equal consecutive factors?

Having an alphabet with only two letters

A = {a, b}

it is impossible to construct a long non-repetitive word

a
ab
aba
aba?

Thue proved that there is an arbitrarily long word on two
letters without three equal consecutive factors;
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Repetition Thresholds

What if we do not require repetition of whole factors?

abc abc ab abc is repeated 2 + 2
3 = 8

3 times;

How low repetitiveness can be achieved with alphabets on k
letters?
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Repetition Thresholds

A generalized definition of a repetition:

A prefix of a word w = w1 . . .wr is a word x = w1 . . .ws , for
some s ≤ r ;

w = banana x = ban

A repetition in a word w is a pair of words p (the period) and
e (the excess) such that pe is a factor of w , p is non-empty,
and e is a prefix of pe;
w = banana pe = anana p = an e = ana

The exponent of a repetition pe is

exp(pe) = |pe|
|p|

exp(anana) = 5
2
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Repetition Thresholds

A β-repetition is a repetition of exponent β;

A word is α+-free if it contains no β-repetition such that
β > α;

A word is α-free if it contains no β-repetition such that β ≥ α;

For k ≥ 2, the repetition threshold RT(k) for k letters is the
smallest α such that there exists an infinite α+-free word over
a k-letter alphabet;

The notion of repetition thresholds was initiated by
Dejean [11] in 1972;
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Repetition Thresholds - Results

Repetition thresholds for words are completely solved;

Theorem 1

(i) RT(2) = 2 [11];

(ii) RT(3) = 7
4 [11];

(iii) RT(4) = 7
5 [16];

(iv) RT(k) = k
k−1 , for k ≥ 5 [3, 8, 9, 10, 13, 14, 16, 17].
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Repetition Thresholds in Graphs

Study of non-repetitiveness has been generalized to graphs by
Currie [4, 5] and Alon et al. [2];

For a k-vertex coloring of a graph, a sequence of colors on a
non-intersecting path is called a factor;

A vertex coloring is said to be α+-free (resp. α-free) if every
factor is α+-free (resp. α-free);
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Repetition Thresholds in Graphs

For a k-vertex colored graph G , the repetition threshold is

RT(k,G ) = inf
k -coloring c

sup {exp(w) |w is a factor in c} .

The repetition threshold over a whole class of graphs G is
defined as

RT(k ,G) = sup
G∈G

RT(k ,G ) .

For the class of paths P the repetition thresholds are known,
since

RT(k ,P) = RT(k);
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Repetition Thresholds of Cycles - C

Theorem 2

(i) RT(2, C) = 5
2 [1];

(ii) RT(3, C) = 2 [6];

(iii) RT(4, C) = 3
2 [7];

(iv) RT(5, C) = 4
3 [7];

(v) RT(k , C) = 1 + 1
d k
2
e , for k ≥ 6 [12].
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Repetition Thresholds of Trees - T

Theorem 3 ([15])

(i) RT(2, T ) = 7
2 ;

(ii) RT(3, T ) = 3;

(iii) RT(k , T ) = 3
2 , for k ≥ 4.
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Repetition Thresholds of Subdivisions - S

Theorem 4 ([15])

(i) RT(2,S) = 7
3 ;

(ii) RT(3,S) = 7
4 ;

(iii) RT(k ,S) = 3
2 , for k ≥ 4.

A subdivision of a graph G is a graph obtained from G by a
sequence of edge subdivisions. By a graph subdivision, we
always mean a “large enough” subdivision.
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Repetition Thresholds of Caterpillars - CP

A caterpillar is a tree such that the graph induced by the
vertices of degree at least 2 is a path (we call it a backbone);

Theorem 5 (BL, Ochem, Pinlou, 2018)

(i) RT(2, CP) = 3;

(ii) RT(3, CP) = 2;

(iii) RT(k , CP) = 3
2 , for k ≥ 4.
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RT of Subcubic Caterpillars - CP3

Bounding the degree of caterpillars to 3 changes the behavior
when the alphabet sizes grow;

Theorem 6 (BL, Ochem, Pinlou, 2018)

(i) RT(2, CP3) = 3;

(ii) RT(3, CP3) = 2;

(iii) RT(4, CP3) = 3
2 ;

(iv) RT(5, CP3) = 4
3 ;

(v) RT(k , CP3) = 1 + 1
d k
2
e , for k ≥ 6.
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Proof of RT(2, CP) = RT(2, CP3) = 3

First, prove RT(2, CP) ≤ 3:

There is a 2+-free coloring of backbone

Color every leaf with a color distinct from its neighbor
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⇒ there is no factor xyx on backbone

So, the coloring of backbone is comprised of consecutive
factors xxyy , a contradiction
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RT of Subcubic Trees - T3

Similarly, bounding the degree of trees introduces additional
hard problems

Theorem 7 (BL, Ochem, Pinlou, 2018)

(i) RT(4, T3) = 3
2 ;

(ii) RT(5, T3) = 3
2 ;

(iii) RT(k , T3) = 1 + 1
2 log k + o

(
1

log k

)
, for k ≥ 6.

Open: k = 2 (known: 3 ≤ RT(2, T3) ≤ 7
2)

Open: k = 3 (known: 2 ≤ RT(3, T3) ≤ 3)
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Summary

|A| = 2 |A| = 3 |A| = 4 |A| = 5 |A| = k , k ≥ 6

P 2 7
4

7
5

5
4

k
k−1

C 5
2 2 3

2
4
3 1 + 1

d k
2
e

S 7
3

7
4

3
2

3
2

3
2

CP3 3 2 3
2

4
3 1 + 1

d k
2
e

T3 ? ? 3
2

3
2 1 + 1

2 log k + o
(

1
log k

)
CP 3 2 3

2
3
2

3
2

T 7
2 3 3

2
3
2

3
2
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