Repetition Thresholds in Graphs

Borut Lužar

Faculty of Information Studies, Novo mesto, Slovenia
borut.luzar@gmail.com
http://luzar.fis.unm.si
joint work with
Pascal Ochem \& Alex Pinlou
Grafy 2019 - June 7, 2019

Basic Notions

■ Given an alphabet of k letters

$$
\mathbb{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}
$$

a word of length n over \mathbb{A},

$$
w=\ell_{1} \ell_{2} \cdots \ell_{n}
$$

is a sequence of letters from \mathbb{A},
i.e., $\ell_{i} \in \mathbb{A}$, for every $1 \leq i \leq n$.

Basic Notions

■ Given an alphabet of k letters

$$
\mathbb{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}
$$

a word of length n over \mathbb{A},

$$
w=\ell_{1} \ell_{2} \cdots \ell_{n}
$$

is a sequence of letters from \mathbb{A},
i.e., $\ell_{i} \in \mathbb{A}$, for every $1 \leq i \leq n$.

- We are interested in consecutive repetitions of subwords or their parts;

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.
ok is a factor of kokos

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.

ok is a factor of kokos

- A repetition in a word w is a factor consisting of two identical consecutive factors

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.

ok is a factor of kokos

- A repetition in a word w is a factor consisting of two identical consecutive factors
kokos banana ananas

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.

ok is a factor of kokos

- A repetition in a word w is a factor consisting of two identical consecutive factors
kokos banana ananas
- A word is non-repetitive if it does not contain a repetition;

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters;

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters;
- Various constructions exist;

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters;
- Various constructions exist;
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$;

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters;
- Various constructions exist;
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$;
- define morphism m as $m(0)=01$ and $m(1)=10$;

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters;
- Various constructions exist;
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$;
- define morphism m as $m(0)=01$ and $m(1)=10$;
- define $w_{i}=m\left(w_{i-1}\right)$;

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters;
- Various constructions exist;
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$;

■ define morphism m as $m(0)=01$ and $m(1)=10$;
■ define $w_{i}=m\left(w_{i-1}\right)$;
■ from a word w_{i} we construct a word x_{i} as a sequence of numbers of zeros between each pair of consecutive ones in w_{i};

Basic Notions

■ Thue [18] showed there exist infinite non-repetitive words on 3 letters;

- Various constructions exist;
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$;
- define morphism m as $m(0)=01$ and $m(1)=10$;
- define $w_{i}=m\left(w_{i-1}\right)$;
- from a word w_{i} we construct a word x_{i} as a sequence of numbers of zeros between each pair of consecutive ones in w_{i};
- Example: $w_{6}=10010110011010010110100110010110$

$$
x_{6}=210201210120210
$$

Basic Notions

■ What if there are several equal consecutive factors?

Basic Notions

■ What if there are several equal consecutive factors?

- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

Basic Notions

■ What if there are several equal consecutive factors?

- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a

Basic Notions

■ What if there are several equal consecutive factors?

- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a
$a b$

Basic Notions

■ What if there are several equal consecutive factors?

- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a
$a b$
$a b a$

Basic Notions

■ What if there are several equal consecutive factors?

- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a
$a b$
$a b a$
$a b a$?

Basic Notions

■ What if there are several equal consecutive factors?

- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a
$a b$
$a b a$
$a b a$?
- Thue proved that there is an arbitrarily long word on two letters without three equal consecutive factors;

Repetition Thresholds

■ What if we do not require repetition of whole factors?

Repetition Thresholds

■ What if we do not require repetition of whole factors? $a b c a b c a b$

Repetition Thresholds

■ What if we do not require repetition of whole factors? $a b c a b c a b \quad a b c$ is repeated $2+\frac{2}{3}=\frac{8}{3}$ times;

Repetition Thresholds

■ What if we do not require repetition of whole factors? $a b c a b c a b \quad a b c$ is repeated $2+\frac{2}{3}=\frac{8}{3}$ times;

- How low repetitiveness can be achieved with alphabets on k letters?

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $x=w_{1} \ldots w_{s}$, for some $s \leq r$;

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $x=w_{1} \ldots w_{s}$, for some $s \leq r$;

$$
w=\text { banana } \quad x=\text { ban }
$$

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $x=w_{1} \ldots w_{s}$, for some $s \leq r$;

$$
w=\text { banana } \quad x=\text { ban }
$$

- A repetition in a word w is a pair of words p (the period) and e (the excess) such that $p e$ is a factor of w, p is non-empty, and e is a prefix of $p e$;

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $x=w_{1} \ldots w_{s}$, for some $s \leq r$;

$$
w=\text { banana } \quad x=\text { ban }
$$

- A repetition in a word w is a pair of words p (the period) and e (the excess) such that pe is a factor of w, p is non-empty, and e is a prefix of $p e$;

$$
w=\text { banana } \quad p e=\text { anana } \quad p=a n \quad e=\text { ana }
$$

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $x=w_{1} \ldots w_{s}$, for some $s \leq r$;

$$
w=\text { banana } \quad x=\text { ban }
$$

- A repetition in a word w is a pair of words p (the period) and e (the excess) such that pe is a factor of w, p is non-empty, and e is a prefix of $p e$;

$$
w=\text { banana } \quad p e=\text { anana } \quad p=a n \quad e=\text { ana }
$$

- The exponent of a repetition pe is

$$
\exp (p e)=\frac{|p e|}{|p|}
$$

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $x=w_{1} \ldots w_{s}$, for some $s \leq r$;

$$
w=\text { banana } \quad x=\text { ban }
$$

- A repetition in a word w is a pair of words p (the period) and e (the excess) such that pe is a factor of w, p is non-empty, and e is a prefix of $p e$;

$$
w=\text { banana } \quad p e=\text { anana } \quad p=a n \quad e=\text { ana }
$$

- The exponent of a repetition pe is

$$
\exp (p e)=\frac{|p e|}{|p|}
$$

$\exp ($ anana $)=\frac{5}{2}$

Repetition Thresholds

- A β-repetition is a repetition of exponent β;

Repetition Thresholds

- A β-repetition is a repetition of exponent β;
- A word is α^{+}-free if it contains no β-repetition such that $\beta>\alpha$;

Repetition Thresholds

- A β-repetition is a repetition of exponent β;
- A word is α^{+}-free if it contains no β-repetition such that $\beta>\alpha$;
■ A word is α-free if it contains no β-repetition such that $\beta \geq \alpha$;

Repetition Thresholds

- A β-repetition is a repetition of exponent β;
- A word is α^{+}-free if it contains no β-repetition such that $\beta>\alpha$;
- A word is α-free if it contains no β-repetition such that $\beta \geq \alpha$;
- For $k \geq 2$, the repetition threshold $\operatorname{RT}(k)$ for k letters is the smallest α such that there exists an infinite α^{+}-free word over a k-letter alphabet;

Repetition Thresholds

- A β-repetition is a repetition of exponent β;
- A word is α^{+}-free if it contains no β-repetition such that $\beta>\alpha$;
- A word is α-free if it contains no β-repetition such that $\beta \geq \alpha$;
- For $k \geq 2$, the repetition threshold $\operatorname{RT}(k)$ for k letters is the smallest α such that there exists an infinite α^{+}-free word over a k-letter alphabet;
- The notion of repetition thresholds was initiated by Dejean [11] in 1972;

Repetition Thresholds - Results

■ Repetition thresholds for words are completely solved;

Repetition Thresholds - Results

■ Repetition thresholds for words are completely solved;

Theorem 1

(i) $\mathrm{RT}(2)=2$ [11];
(ii) $\operatorname{RT}(3)=\frac{7}{4}[11]$;
(iii) $\mathrm{RT}(4)=\frac{7}{5}$ [16];
(iv) $\operatorname{RT}(k)=\frac{k}{k-1}$, for $k \geq 5[3,8,9,10,13,14,16,17]$.

Repetition Thresholds in Graphs

■ Study of non-repetitiveness has been generalized to graphs by Currie [4, 5] and Alon et al. [2];

Repetition Thresholds in Graphs

■ Study of non-repetitiveness has been generalized to graphs by Currie [4, 5] and Alon et al. [2];
■ For a k-vertex coloring of a graph, a sequence of colors on a non-intersecting path is called a factor;

Repetition Thresholds in Graphs

■ Study of non-repetitiveness has been generalized to graphs by Currie [4, 5] and Alon et al. [2];

- For a k-vertex coloring of a graph, a sequence of colors on a non-intersecting path is called a factor;
■ A vertex coloring is said to be α^{+}-free (resp. α-free) if every factor is α^{+}-free (resp. α-free);

Repetition Thresholds in Graphs

■ For a k-vertex colored graph G, the repetition threshold is

$$
\operatorname{RT}(k, G)=\inf _{k \text {-coloring } c} \sup \{\exp (w) \mid w \text { is a factor in } c\} .
$$

Repetition Thresholds in Graphs

■ For a k-vertex colored graph G, the repetition threshold is

$$
\operatorname{RT}(k, G)=\inf _{k \text {-coloring } c} \sup \{\exp (w) \mid w \text { is a factor in } c\} .
$$

- The repetition threshold over a whole class of graphs \mathcal{G} is defined as

$$
\mathrm{RT}(k, \mathcal{G})=\sup _{G \in \mathcal{G}} \mathrm{RT}(k, G)
$$

- For the class of paths \mathcal{P} the repetition thresholds are known, since

$$
\mathrm{RT}(k, \mathcal{P})=\mathrm{RT}(k)
$$

Repetition Thresholds of Cycles - \mathcal{C}

Theorem 2

(i) $\operatorname{RT}(2, \mathcal{C})=\frac{5}{2}[1]$;
(ii) $\operatorname{RT}(3, \mathcal{C})=2[6]$;
(iii) $\mathrm{RT}(4, \mathcal{C})=\frac{3}{2}[7]$;
(iv) $\operatorname{RT}(5, \mathcal{C})=\frac{4}{3}[7]$;
(v) $\operatorname{RT}(k, \mathcal{C})=1+\frac{1}{\left[\frac{k}{2}\right\rangle}$, for $k \geq 6[12]$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 3 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 3 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 3 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 3 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 3 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 3 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 3 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Subdivisions - \mathcal{S}

Theorem 4 ([15])

(i) $\operatorname{RT}(2, \mathcal{S})=\frac{7}{3}$;
(ii) $\operatorname{RT}(3, \mathcal{S})=\frac{7}{4}$;
(iii) $\operatorname{RT}(k, \mathcal{S})=\frac{3}{2}$, for $k \geq 4$.

- A subdivision of a graph G is a graph obtained from G by a sequence of edge subdivisions. By a graph subdivision, we always mean a "large enough" subdivision.

Repetition Thresholds of Caterpillars - $\mathcal{C P}$

- A caterpillar is a tree such that the graph induced by the vertices of degree at least 2 is a path (we call it a backbone);

Theorem 5 (BL, Ochem, Pinlou, 2018)

(i) $\mathrm{RT}(2, \mathcal{C P})=3$;
(ii) $\operatorname{RT}(3, \mathcal{C P})=2$;
(iii) $\operatorname{RT}(k, \mathcal{C P})=\frac{3}{2}$, for $k \geq 4$.

RT of Subcubic Caterpillars - $\mathcal{C P}_{3}$

■ Bounding the degree of caterpillars to 3 changes the behavior when the alphabet sizes grow;

RT of Subcubic Caterpillars - $\mathcal{C P}_{3}$

- Bounding the degree of caterpillars to 3 changes the behavior when the alphabet sizes grow;

Theorem 6 (BL, Ochem, Pinlou, 2018)

(i) $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$;
(ii) $\mathrm{RT}\left(3, \mathcal{C \mathcal { P } _ { 3 }}\right)=2$;
(iii) $\mathrm{RT}\left(4, \mathcal{C P}_{3}\right)=\frac{3}{2}$;
(iv) $\mathrm{RT}\left(5, \mathcal{C} \mathcal{P}_{3}\right)=\frac{4}{3}$;
(v) $\operatorname{RT}\left(k, \mathcal{C P} \mathcal{P}_{3}\right)=1+\frac{1}{\left\lceil\frac{k}{2}\right\rceil}$, for $k \geq 6$.

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right)=3$

First, prove $\operatorname{RT}(2, \mathcal{C P}) \leq 3$:

- There is a 2^{+}-free coloring of backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

First, prove $\mathrm{RT}(2, \mathcal{C P}) \leq 3$:

- There is a 2^{+}-free coloring of backbone
- Color every leaf with a color distinct from its neighbor

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor xyxy on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$

■ \Rightarrow there is no factor $x y x y$ on backbone

- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone

■ Suppose there is factor $x y x$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
$■ \Rightarrow$ there is no factor $x y x$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
$■ \Rightarrow$ there is no factor $x y x$ on backbone
- So, the coloring of backbone is comprised of consecutive factors xxyy, a contradiction

RT of Subcubic Trees $-\mathcal{T}_{3}$

■ Similarly, bounding the degree of trees introduces additional hard problems

RT of Subcubic Trees $-\mathcal{T}_{3}$

- Similarly, bounding the degree of trees introduces additional hard problems

Theorem 7 (BL, Ochem, Pinlou, 2018)

(i) $\operatorname{RT}\left(4, \mathcal{T}_{3}\right)=\frac{3}{2}$;
(ii) $\operatorname{RT}\left(5, \mathcal{T}_{3}\right)=\frac{3}{2}$;
(iii) $\operatorname{RT}\left(k, \mathcal{T}_{3}\right)=1+\frac{1}{2 \log k}+o\left(\frac{1}{\log k}\right)$, for $k \geq 6$.

RT of Subcubic Trees $-\mathcal{T}_{3}$

■ Similarly, bounding the degree of trees introduces additional hard problems

Theorem 7 (BL, Ochem, Pinlou, 2018)

(i) $\operatorname{RT}\left(4, \mathcal{T}_{3}\right)=\frac{3}{2}$;
(ii) $\operatorname{RT}\left(5, \mathcal{T}_{3}\right)=\frac{3}{2}$;
(iii) $\operatorname{RT}\left(k, \mathcal{T}_{3}\right)=1+\frac{1}{2 \log k}+o\left(\frac{1}{\log k}\right)$, for $k \geq 6$.

- Open: $k=2$ (known: $\left.3 \leq \operatorname{RT}\left(2, \mathcal{T}_{3}\right) \leq \frac{7}{2}\right)$
- Open: $k=3$ (known: $2 \leq \operatorname{RT}\left(3, \mathcal{T}_{3}\right) \leq 3$)

Summary

	$\|\mathbb{A}\|=2$	$\|\mathbb{A}\|=3$	$\|\mathbb{A}\|=4$	$\|\mathbb{A}\|=5$	$\|\mathbb{A}\|=k, k \geq 6$
\mathcal{P}	2	$\frac{7}{4}$	$\frac{7}{5}$	$\frac{5}{4}$	$\frac{k}{k-1}$
\mathcal{C}	$\frac{5}{2}$	2	$\frac{3}{2}$	$\frac{4}{3}$	$1+\frac{1}{\left\lceil\frac{k}{2}\right\rceil}$
\mathcal{S}	$\frac{7}{3}$	$\frac{7}{4}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
$\mathcal{C} \mathcal{P}_{3}$	3	2	$\frac{3}{2}$	$\frac{4}{3}$	$1+\frac{1}{\left\lceil\frac{k}{2}\right\rceil}$
\mathcal{T}_{3}	$?$	$?$	$\frac{3}{2}$	$\frac{3}{2}$	$1+\frac{1}{2 \log k}+o\left(\frac{1}{\log k}\right)$
$\mathcal{C P}$	3	2	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
\mathcal{T}	$\frac{7}{2}$	3	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$

References

I

[1] Aberkane, A., and Currie, J. D.
There exist binary circular $5 / 2^{+}$power free words of every length. Electron. J. Combin. 11 (2004), \#R10.
[2] Alon, N., Grytczuk, J., Haluszczak, M., and Riordan, O.

Non-repetitive colorings of graphs.
Random Struct. Algor. 21 (2002), 336-346.
[3] Carpi, A.
On Dejean's conjecture over large alphabets.
Theoret. Comput. Sci. 385, 1-3 (2007), 137-151.

References

II

[4] Currie, J. D.
Non-repetitive Walks in Graphs and Digraphs.
PhD thesis, University of Calgary, Alberta, Canada, 1987.
[5] Currie, J. D.
Which graphs allow infinite nonrepetitive walks?
Discrete Math. 87 (1991), 249-260.
[6] Currie, J. D.
There are ternary circular square-free words of length n for $n \geq 18$.
Electron. J. Combin. 9 (2002), 1-7.

References

III

[7] Currie, J. D., Mol, L., and Rampersad, N.
Circular repetition thresholds on some small alphabets: Last cases of gorbunova's conjecture.
Electron. J. Combin. 26, 2 (2019), \#P2.31.
[8] Currie, J. D., and Rampersad, N.
Dejean's conjecture holds for $n \geq 27$.
RAIRO - Theoretical Informatics and Applications 43, 4 (2009), 775-778.
[9] Currie, J. D., and Rampersad, N.
Dejean's conjecture holds for $n \geq 30$.
Theoret. Comput. Sci. 410, 30-32 (2009), 2885-2888.

References

IV

[10] Currie, J. D., and Rampersad, N.
A proof of Dejean's conjecture.
Math. Comp. 80 (2011), 1063-1070.
[11] Dejean, F.
Sur un théorème de Thue.
J. Combin. Theory Ser. A 13 (1972), 90-99.
[12] Gorbunova, I. A.
Repetition threshold for circular words.
Electron. J. Combin. 19, 4 (2012), P11.
[13] Mohammad-Noori, M., and Currie, J. D.
Dejean's conjecture and Sturmian words.
Europ. J. Combin. 28, 3 (2007), 876-890.

References

V

[14] Moulin Ollagnier, J.
Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters.
Theoret. Comput. Sci. 95, 2 (1992), 187-205.
[15] Ochem, P., and Vaslet, E.
Repetition thresholds for subdivided graphs and trees.
RAIRO - Theoretical Informatics and Applications 46, 1 (2012), 123-130.
[16] Pansiot, J.-J.
A propos d'une conjecture de F. Dejean sur les répétitions dans les mots.
Discrete Appl. Math. 7, 3 (1984), 297-311.

References

VI

[17] Rao, M.
Last cases of Dejean's conjecture.
Theoret. Comput. Sci. 412, 27 (2011), 3010-3018.
[18] Thue, A.
Über unendliche Zeichenreichen.
Norske Vid. Selsk. Skr., I Mat. Nat. Kl., Christiana 7 (1906), 1-22.

Thank you!

