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Faculty of Information Studies, Novo mesto, Slovenia
borut.luzar@gmail.com

http://luzar.fis.unm.si

Joint work with

Herve Hocquard & Dimitri Lajou

Workshop on Embedded Graphs - Colorings and Structure

June, 2021



Warming-up definitions

Subcubic graphs → graphs with maximum degree 3;

Simple graphs (although multiedges are not problematic);

Distance between edges → distance between the
corresponding vertices in the line graph
(adjacent edges are at distance 1);

a b c

d(a, b) = 1, d(a, c) = 2

Note: for consistency, the terminology is adjusted in results;
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Proper edge-coloring

Adjacent edges receive distinct colors;

Edges of every color form a matching;

The smallest k for which a graph G admits an edge-coloring
with k colors is the chromatic index of G , χ′(G );

By Vizing’s theorem [23], for every subcubic graph G it holds

3 ≤ χ′(G ) ≤ 4
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Strong edge-coloring

Edges at distance at most 2 receive distinct colors;

Edges of every color form an induced matching,
(i.e., the graph induced on the endvertices is a matching);

The smallest k for which G admits a strong edge-coloring
with k colors is the strong chromatic index of G , χ′

s(G );

Andersen (1992) [2], and Horák, Qing & Trotter (1993) [10]
proved that for every subcubic graph G it holds

χ′
s(G ) ≤ 10
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Packings

A set of edges is a k-packing if
every pair of edges is at distance at least k + 1;

Hence, every matching is 1-packing and every induced
matching is a 2-packing;

For a non-decreasing sequence of positive integers,
S = (s1, . . . , s`), Gastineau and Togni (2019) [6], defined an
S-packing edge-coloring of G as
a partition of the edge set of G into ` subsets {X1, . . . ,X`}
such that each Xi is an si -packing;

The notion of packing colorings is derived from its vertex
analogues introduced by Goddard et al. (2008) [7], and
Goddard and Xu (2012) [8];
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Example

Consider the cubic graph with χ′
s = 10:

It is (1, 1, 2, 2)-packing edge-colorable;

What is the smallest k so it is
(1, 2, ..., 2︸ ︷︷ ︸

k

)-packing edge-colorable?
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Today’s focus

For S = (s1, . . . , s`), we are interested in S-packing
edge-colorings with si ∈ {1, 2} for a given number of 1’s;

We abbreviate (1, . . . , 1︸ ︷︷ ︸
p

, 2, . . . , 2︸ ︷︷ ︸
q

) = (1p, 2q);

By Vizing (also Brooks):
Every subcubic graph admits a (14)-packing edge-coloring.

By Andersen and Horák et al.:
Every subcubic graph admits a (210)-packing edge-coloring.

What is in between and what is open?
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(1, 1, 1, 2k)



(1, 1, 1, 2)-packing edge-coloring

The color appearing the least number of times, call it δ, in a
proper edge-coloring of subcubic graphs is rare;

Albertson & Haas (1996) [1]:
If G is cubic, at most 2

15 edges are colored with δ.

Steffen (2004) [20]:
The Petersen graph is the only bridgeless cubic graph
achieving 2

15 edges colored with δ.

Fouquet & Vanherpe (2013) [5] and
(also for multigraphs) Kamiński & Kowalik (2014)[11]:
For any subcubic graph, less than 2

15 edges are colored with δ,
except for three graphs.

As a side product...
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(1, 1, 1, 2)-packing edge-coloring

Fouquet & Vanherpe (2013) [5] and Payan (1977) [18]:
Every subcubic graph admits a (1, 1, 1, 2)-packing
edge-coloring.
Here a 2-packing cannot be replaced by a 3-packing due to
the Petersen and the Tietze graphs.

Conjecture 1 (Gastineau & Togni [6])

Every cubic graph different from the Petersen and the Tietze graph
is (1, 1, 1, 3)-packing edge-colorable.
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(1, 1, 2k)



(1, 1, 2k)-packing edge-coloring

Trivial: k ≤ 6
Take any (1, 1, 1, 2)-packing edge-coloring of G and
replace one 1-packing with five 2-packings;
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(1, 1, 2k)-packing edge-coloring

Showing there is a 1-packing A in a (1, 1, 1, 2)-packing
edge-coloring such that no five edges of A are pairwise at
distance 2, Gastineau & Togni (2019) [6] proved:
Every bridgeless cubic graph admits a (1, 1, 25)-packing
edge-coloring.

Hocquard, Lajou & BL (2020+) [9]:
Every subcubic graph admits a (1, 1, 25)-packing
edge-coloring.
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(1, 1, 2k)-packing edge-coloring

There are graph(s) that do not admit a (1, 1, 23)-packing
edge-coloring;

Conjecture 2 (Gastineau and Togni [6])

Every subcubic graph is (1, 1, 24)-packing edge-colorable.

The conjecture is supported by checking all bridgeless
subcubic graphs on at most 17 vertices;

Is K3,3 with a subdivided edge the only bridgeless subcubic
graph needing four 2-packings?
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(1, 2k)



(1, 2k)-packing edge-coloring

Trivial: k ≤ 9
By the strong edge-coloring result;

Hocquard, Lajou & BL (2020+) [9]:
Every subcubic graph admits a (1, 28)-packing edge-coloring.

(Using the fact that the 1-packing contains many edges, the
proof is rather simple.)
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(1, 2k)-packing edge-coloring

There are graph(s) that do not admit a (1, 26)-packing
edge-coloring;

Gastineau and Togni [6] asked, but we

Conjecture 3 (Hocquard, Lajou & BL (2020+) [9])

Every subcubic graph is (1, 27)-packing edge-colorable.

The conjecture is supported by checking all bridgeless
subcubic graphs on at most 17 vertices;
Is K3,3 with a subdivided edge the only bridgeless subcubic
graph needing seven 2-packings?
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(2k)



(2k)-packing edge-coloring

A.k.a. strong edge-coloring;

We know that k = 10, but...

We only know two bridgeless subcubic graphs achieving the
bound:

Are they the only ones?
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Why interesting?



How they are connected?

The (conjectured) bounds series:

(1, 1, 1, 2) (1, 1, 24) (1, 27) (210)

It seems that we can always “replace” a 1-packing with three
2-packings;

Note that the other 1-packings cannot stay fixed in general;

It does not apply to class I graphs!
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Adding constraints



The Conjecture

Conjecture 4 (Faudree, Gyárfás, Schelp & Tuza (1990) [4])

For every subcubic graph G it holds:

(1) G admits a (210)-packing edge-coloring;

(2) If G is bipartite, then it admits a (29)-packing edge-coloring;

(3) If G is planar, then it admits a (29)-packing edge-coloring;

(4) If G is bipartite and for each edge uv we have
d(u) + d(v) ≤ 5, then it admits a (26)-packing edge-coloring;

(5) If G is bipartite of girth at least 6, then it admits a
(27)-packing edge-coloring;

(6) If G is bipartite and has girth large enough, then it admits a
(25)-packing edge-coloring;
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Adding constraints:
Class I graphs



Class I graphs

By definition:
Subcubic class I graphs are (1, 1, 1)-packing edge-colorable;

Hocquard, Lajou & BL (2020+) [9]:
Every subcubic class I graph admits a (1, 1, 24)-packing
edge-coloring.

Hocquard, Lajou & BL (2020+) [9]:
Every subcubic class I graph admits a (1, 27)-packing
edge-coloring.

By Andersen and Horák et al.:
Every subcubic class I graph admits a (210)-packing
edge-coloring.
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Class I graphs

Conjecture 5 (Gastineau and Togni [6])

Every subcubic class I graph is (1, 1, 23)-packing edge-colorable.

Conjecture 6 (Hocquard, Lajou & BL (2020+) [9])

Every subcubic class I graph is (1, 26)-packing edge-colorable.

Both conjectures, if true, are tight, due to K3,3;
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Class I graphs

Question 7

Is the Wagner graph the only subcubic class I graph that does not
admit a (29)-packing edge-coloring?
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Adding constraints:
Planar graphs



Planar graphs

By Tait [22] and the Four Color Theorem:
Every bridgeless cubic planar graph admits a (1, 1, 1)-packing
edge-coloring.

Must be cubic and bridgeless → K4 with a subdivided edge is
not class I.

Conjecture 8 (Albertson & Haas (1996) [1])

Every bridgeless subcubic planar graph with at least two vertices of
degree 2 admits a (1, 1, 1)-packing edge-coloring.

Special case of Seymour’s conjecture [19];

Only partially solved;
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Planar graphs

Kostochka et al. (2016) [14]:
Every subcubic planar graph admits a (29)-packing
edge-coloring.

The bound is tight due to the 3-prism, which is the only
known subcubic planar graph that does not admit a
(28)-packing edge-coloring.
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Planar graphs

No particular bounds for general subcubic planar graphs in
terms of (1, 1, 2k)- and (1, 2`)-packing edge-coloring;

Conjecture 9 (Hocquard, Lajou & BL (2020+) [9])

Every subcubic planar graph is (1, 1, 23)-packing edge-colorable
and (1, 26)-packing edge-colorable.
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Planar graphs

Infinitely many subcubic bridgeless planar graphs which do not
admit a (1, 25)-packing edge-coloring;
Infinitely many subcubic bridgeless planar graphs which do not
admit a (1, 1, 22)-packing edge-coloring;

32 / 55



Adding constraints:
Bipartite graphs



Bipartite graphs

By König (1916) [13]:
Every subcubic bipartite graph admits a (1, 1, 1)-packing
edge-coloring.

By Steger & Yu (1993) [21]:
Every subcubic bipartite graph admits a (29)-packing
edge-coloring.

Known bridgeless graphs that do not admit (28)-packing
edge-coloring have less than 13 vertices;

Conjecture 10 (BL, Mačajová, Škoviera & Soták (2021+) [15])

If G is a bridgeless [bipartite] subcubic graph on at least 13
vertices, then it is (28)-packing edge-colorable.
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Bipartite graphs

Bipartite graphs are class I, so the results apply;

Conjectures 5 and 6 can be considered in a special case of
bipartite graphs;

Even in the bipartite setting there are many bridgeless graphs
achieving the upper bound;
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Bipartite graphs - Light edges

Recall item (4) of Conjecture 12:

Conjecture 11 (Faudree, Gyárfás, Schelp & Tuza (1990) [4])

For every subcubic graph G it holds:

(4) If G is bipartite and for each edge uv it holds w(uv) ≤ 5,
then it admits a (26)-packing edge-coloring;

“Equivalent” to the problem of incidence coloring of subcubic
graphs, solved by Maydanskiy [17] in 2005;

Solved also by Wu and Lin [24] in 2008...

... and also by BL, Mockovčiaková, Soták & Škrekovski [16]
in 2013;
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Bipartite graphs - Light edges

Bipartite graphs with edges of weight at most 5 need 3 colors
for a proper edge-coloring;

Is it true that every subcubic bipartite graph with each edge
of weight 5 admits a (1, 1, 22)-packing edge-coloring?

Yes (Soták, pers. comm.)

Is it true that every subcubic bipartite graph with each edge
of weight 5 admits a (1, 24)-packing edge-coloring?

Both bounds are tight by the lower bounds for the trees...
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Adding constraints:
Big girth graphs



Increasing girth - Trees

Every tree admits:

(1) a (1, 1, 1)-packing edge-coloring;
(2) a (1, 1, 22)-packing edge-coloring;
(3) a (1, 24)-packing edge-coloring;
(4) a (25)-packing edge-coloring;

The bounds are tight (consider a neighborhood of one edge);
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Big girth

Is it possible for subcubic graphs of large enough girth to have
the same bounds as trees?

Not for proper edge-coloring!

Kochol (1996) [12]:
There are snarks of arbitrary large girth,
i.e., there are bridgeless cubic graphs with arbitrary large girth
that do not admit a (1, 1, 1)-packing edge-coloring.
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Big girth

Conjecture 12 (Faudree, Gyárfás, Schelp & Tuza (1990) [4])

For every subcubic graph G it holds:

(5) If G is bipartite of girth at least 6, then it admits a
(27)-packing edge-coloring;

(6) If G is bipartite and has girth large enough, then it admits a
(25)-packing edge-coloring;

Item (5) of Conjecture 12 is open;

Item (6) of Conjecture 12 has been rejected;

BL, Mačajová, Škoviera & Soták (2021+) [15]
A cubic graph G admits a (25)-packing edge-coloring if and
only if G covers the Petersen graph.
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Big girth

Some partial results for (25)-packing edge-coloring:
De Orsey et al. (2018) [3]:
Every subcubic planar graph of girth at least 30 admits a
(25)-packing edge-coloring.

Analogues of item (6) are the (1, 1, 22)-packing and the
(1, 24)-packing edge-coloring;

But! Gastineau & Togni (2019) [6]:
Every cubic graph admitting a (1, 1, 22)-packing edge-coloring
is class 1 and has order divisible by four!

So, it does not hold for (1, 1, 22)-packing edge-coloring;

Is it true that every bipartite subcubic graph of large enough
girth admits a (1, 24)-packing edge-coloring?
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Summary



(13, 2a) (12, 2b) (1, 2c) (2d)
(aL, aU) (bL, bU) (cL, cU) (dL, dU)

general [1,1] [4,5] [7,8] [10,10]

class I [0,0] [3,4] [6,7] [10,10]

planar [1,1] [3,5] [6,8] [9,9]

bipartite [0,0] [3,4] [6,7] [9,9]

large girth [1,1] [3,5] [4,8] [6,10]

x ∈ {a, b, c , d};
xL - exists graph which needs at least so many 2-packings;

xU - proven upper bound for the number of 2-packings;

red color - only finitely many known examples of bridgeless graphs
attaining the bound;

blue color - our result;

green color - resolved completely;
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Thank you!
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Škrekovski, R.

Strong edge coloring ofsubcubic bipartite graphs.

ArXiv Preprint (2013).

http://arxiv.org/abs/1311.6668.

[17] Maydanskiy, M.

The incidence coloring conjecture for graphs of maximum degree 3.

Discrete Math. 292, 1–3 (2005), 131–141.

51 / 55



References
VII

[18] Payan, C.

Sur quelques problmes de couverture et de couplage en
combinatoire.

PhD thesis, Institut National Polytechnique de Grenoble - INPG,
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