Repetition Thresholds in Graphs［12］

Borut Lužar

Faculty of Information Studies，Novo mesto，Slovenia \＆
Pavol Jozef Šafárik University，Faculty of Science，Košice，Slovakia．
borut．luzar＠gmail．com
http：／／luzar．fis．unm．si
joint work with
Pascal Ochem \＆Alex Pinlou
KoKoS－February 27， 2018

Basic Notions

- Given an alphabet

$$
\mathbb{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}
$$

of k letters, a word

$$
w=\ell_{1} \ell_{2} \cdots \ell_{n}
$$

of length n over \mathbb{A} is a sequence of letters from \mathbb{A}, i.e., $\ell_{i} \in \mathbb{A}$, for every $1 \leq i \leq n$.

Basic Notions

- Given an alphabet

$$
\mathbb{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}
$$

of k letters, a word

$$
w=\ell_{1} \ell_{2} \cdots \ell_{n}
$$

of length n over \mathbb{A} is a sequence of letters from \mathbb{A}, i.e., $\ell_{i} \in \mathbb{A}$, for every $1 \leq i \leq n$.

- We are interested in consecutive repetitions of subwords or their parts

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.

ok is a factor of kokos

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.
ok is a factor of kokos
- A repetition in a word w is a factor consisting of two identical consecutive factors

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.

ok is a factor of kokos

- A repetition in a word w is a factor consisting of two identical consecutive factors
kokos banana ananas

Basic Notions

- A subword or a factor of a word w is a sequence of consecutive letters in w.

ok is a factor of kokos

- A repetition in a word w is a factor consisting of two identical consecutive factors
kokos banana ananas
- A word is non-repetitive if it contains no repetition

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters
- Various different constructions exist

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters
- Various different constructions exist
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters
- Various different constructions exist
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$
- define morphism m as $m(0)=01$ and $m(1)=10$

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters
- Various different constructions exist
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$
- define morphism m as $m(0)=01$ and $m(1)=10$
- define $w_{i}=m\left(w_{i-1}\right)$

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters
- Various different constructions exist
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$
- define morphism m as $m(0)=01$ and $m(1)=10$
- define $w_{i}=m\left(w_{i-1}\right)$
- from a word w_{i} we construct a word x_{i} as a sequence of numbers of zeros between each pair of consecutive ones in w_{i}

Basic Notions

- Thue [18] showed there exist infinite non-repetitive words on 3 letters
- Various different constructions exist
- Thue-Morse $(0,1)$ generator:
- start with $w_{0}=1$
- define morphism m as $m(0)=01$ and $m(1)=10$
- define $w_{i}=m\left(w_{i-1}\right)$
- from a word w_{i} we construct a word x_{i} as a sequence of numbers of zeros between each pair of consecutive ones in w_{i}
- Example: $w_{6}=10010110011010010110100110010110$

$$
x_{6}=210201210120210
$$

Basic Notions

■ What if there are several equal consecutive factors?

Basic Notions

■ What if there are several equal consecutive factors?

- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

Basic Notions

■ What if there are several equal consecutive factors?

- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a

Basic Notions

- What if there are several equal consecutive factors?
- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a
$a b$

Basic Notions

- What if there are several equal consecutive factors?
- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a
$a b$
$a b a$

Basic Notions

- What if there are several equal consecutive factors?
- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a
$a b$
$a b a$
$a b a$?

Basic Notions

- What if there are several equal consecutive factors?
- Having an alphabet with only two letters

$$
\mathbb{A}=\{a, b\}
$$

it is impossible to construct a long non-repetitive word

- a
$a b$
$a b a$
$a b a$?
- Thue proved that there is an arbitrarily long word on two letters without three equal consecutive factors

Repetition Thresholds

■ What if we do not require repetition of whole factors?

Repetition Thresholds

■ What if we do not require repetition of whole factors? abcabcab

Repetition Thresholds

■ What if we do not require repetition of whole factors? $a b c a b c a b \quad a b c$ is repeated $2+\frac{2}{3}=\frac{8}{3}$ times

Repetition Thresholds

■ What if we do not require repetition of whole factors? $a b c a b c a b \quad a b c$ is repeated $2+\frac{2}{3}=\frac{8}{3}$ times

- How low repetitiveness can be achieved with alphabets on k letters?

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $p=w_{1} \ldots w_{s}$, for some $s \leq r$

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $p=w_{1} \ldots w_{s}$, for some $s \leq r$

$$
w=\text { banana } \quad p=\text { ban }
$$

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $p=w_{1} \ldots w_{s}$, for some $s \leq r$

$$
w=\text { banana } \quad p=\text { ban }
$$

- A repetition in a word w is a pair of words p (the period) and e (the excess) such that $p e$ is a factor of w, p is non-empty, and e is a prefix of $p e$.

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $p=w_{1} \ldots w_{s}$, for some $s \leq r$

$$
w=\text { banana } \quad p=\text { ban }
$$

- A repetition in a word w is a pair of words p (the period) and e (the excess) such that pe is a factor of w, p is non-empty, and e is a prefix of $p e$.

$$
w=\text { banana } \quad p e=\text { anana } \quad p=a n \quad e=\text { ana }
$$

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $p=w_{1} \ldots w_{s}$, for some $s \leq r$

$$
w=\text { banana } \quad p=\text { ban }
$$

- A repetition in a word w is a pair of words p (the period) and e (the excess) such that $p e$ is a factor of w, p is non-empty, and e is a prefix of $p e$.

$$
w=\text { banana } \quad p e=\text { anana } \quad p=a n \quad e=\text { ana }
$$

- The exponent of a repetition pe is

$$
\exp (p e)=\frac{|p e|}{|p|}
$$

Repetition Thresholds

A generalized definition of a repetition:

- A prefix of a word $w=w_{1} \ldots w_{r}$ is a word $p=w_{1} \ldots w_{s}$, for some $s \leq r$

$$
w=\text { banana } \quad p=\text { ban }
$$

- A repetition in a word w is a pair of words p (the period) and e (the excess) such that $p e$ is a factor of w, p is non-empty, and e is a prefix of $p e$.

$$
w=\text { banana } \quad p e=\text { anana } \quad p=a n \quad e=\text { ana }
$$

- The exponent of a repetition pe is

$$
\exp (p e)=\frac{|p e|}{|p|}
$$

$\exp ($ anana $)=\frac{5}{2}$

Repetition Thresholds

- A β-repetition is a repetition of exponent β

Repetition Thresholds

- A β-repetition is a repetition of exponent β
- A word is α^{+}-free if it contains no β-repetition such that $\beta>\alpha$

Repetition Thresholds

- A β-repetition is a repetition of exponent β
- A word is α^{+}-free if it contains no β-repetition such that $\beta>\alpha$
- A word is α-free if it contains no β-repetition such that $\beta \geq \alpha$

Repetition Thresholds

- A β-repetition is a repetition of exponent β
- A word is α^{+}-free if it contains no β-repetition such that $\beta>\alpha$
- A word is α-free if it contains no β-repetition such that $\beta \geq \alpha$
- For $k \geq 2$, the repetition threshold $\mathrm{RT}(k)$ for k letters is the smallest α such that there exists an infinite α^{+}-free word over a k-letter alphabet

Repetition Thresholds

- A β-repetition is a repetition of exponent β
- A word is α^{+}-free if it contains no β-repetition such that $\beta>\alpha$
- A word is α-free if it contains no β-repetition such that $\beta \geq \alpha$
- For $k \geq 2$, the repetition threshold $\mathrm{RT}(k)$ for k letters is the smallest α such that there exists an infinite α^{+}-free word over a k-letter alphabet
- The notion of repetition thresholds was initiated by Dejean [10] in 1972

Repetition Thresholds - Results

■ Repetition thresholds for words are completely solved

Repetition Thresholds - Results

■ Repetition thresholds for words are completely solved

Theorem 1

(i) $\mathrm{RT}(2)=2[10]$;
(ii) $\mathrm{RT}(3)=\frac{7}{4}$ [10];
(iii) $\mathrm{RT}(4)=\frac{7}{5}$ [16];
(iv) $\operatorname{RT}(k)=\frac{k}{k-1}$, for $k \geq 5[3,7,8,9,13,14,16,17]$.

Repetition Thresholds in Graphs

■ Study of non-repetitiveness has been generalized to graphs by Currie [4, 5] and Alon et al. [2]

Repetition Thresholds in Graphs

■ Study of non-repetitiveness has been generalized to graphs by Currie [4, 5] and Alon et al. [2]

- For a k-vertex coloring of a graph, a sequence of colors on a non-intersecting path is called a factor

Repetition Thresholds in Graphs

■ Study of non-repetitiveness has been generalized to graphs by Currie [4, 5] and Alon et al. [2]

- For a k-vertex coloring of a graph, a sequence of colors on a non-intersecting path is called a factor
- A vertex coloring is said to be α^{+}-free (resp. α-free) if every factor is α^{+}-free (resp. α-free)

Repetition Thresholds in Graphs

■ For a k-vertex colored graph G, the repetition threshold is

$$
\operatorname{RT}(k, G)=\inf _{k \text {-coloring } c} \sup \{\exp (w) \mid w \text { is a factor in } c\} .
$$

Repetition Thresholds in Graphs

■ For a k-vertex colored graph G, the repetition threshold is

$$
\operatorname{RT}(k, G)=\inf _{k \text {-coloring } c} \sup \{\exp (w) \mid w \text { is a factor in } c\} .
$$

- The repetition threshold over a whole class of graphs \mathcal{G} is defined as

$$
\mathrm{RT}(k, \mathcal{G})=\sup _{G \in \mathcal{G}} \mathrm{RT}(k, G)
$$

- For the class of paths \mathcal{P} the repetition thresholds are known, since

$$
\mathrm{RT}(k, \mathcal{P})=\mathrm{RT}(k)
$$

Repetition Thresholds of Cycles - \mathcal{C}

Theorem 2

(i) $\operatorname{RT}(2, \mathcal{C})=\frac{5}{2}[1]$;
(ii) $\operatorname{RT}(3, \mathcal{C})=2[6]$;
(iii) $\operatorname{RT}(k, \mathcal{C})=1+\frac{1}{\left[\frac{k}{2}\right\rceil}$, for $k \geq 6[11]$.

Repetition Thresholds of Cycles - \mathcal{C}

Theorem 2

(i) $\operatorname{RT}(2, \mathcal{C})=\frac{5}{2}[1]$;
(ii) $\operatorname{RT}(3, \mathcal{C})=2[6]$;
(iii) $\operatorname{RT}(k, \mathcal{C})=1+\frac{1}{\left[\frac{k}{2}\right\rceil}$, for $k \geq 6[11]$.

Conjecture 3 ([11])
(i) $\operatorname{RT}(4, \mathcal{C})=\frac{3}{2}$;
(ii) $\operatorname{RT}(5, \mathcal{C})=\frac{4}{3}$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 4 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 4 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 4 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 4 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 4 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 4 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Trees - \mathcal{T}

Theorem 4 ([15])

(i) $\operatorname{RT}(2, \mathcal{T})=\frac{7}{2}$;
(ii) $\operatorname{RT}(3, \mathcal{T})=3$;
(iii) $\operatorname{RT}(k, \mathcal{T})=\frac{3}{2}$, for $k \geq 4$.

Repetition Thresholds of Subdivisions - \mathcal{S}

Theorem 5 ([15])

(i) $\operatorname{RT}(2, \mathcal{S})=\frac{7}{3}$;
(ii) $\operatorname{RT}(3, \mathcal{S})=\frac{7}{4}$;
(iii) $\operatorname{RT}(k, \mathcal{S})=\frac{3}{2}$, for $k \geq 4$.

- A subdivision of a graph G is a graph obtained from G by a sequence of edge subdivisions. By a graph subdivision, we always mean a "large enough" subdivision

Repetition Thresholds of Caterpillars - $\mathcal{C P}$

- A caterpillar is a tree such that the graph induced by the vertices of degree at least 2 is a path (we call it a backbone)

Theorem 6 (BL, Ochem, Pinlou, 2018^{+})

(i) $\operatorname{RT}(2, \mathcal{C P})=3$;
(ii) $\mathrm{RT}(3, \mathcal{C P})=2$;
(iii) $\operatorname{RT}(k, \mathcal{C P})=\frac{3}{2}$, for $k \geq 4$.

RT of Subcubic Caterpillars - $\mathcal{C P}_{3}$

■ Bounding the degree of caterpillars to 3 changes the behavior when the alphabet sizes grow

RT of Subcubic Caterpillars $-\mathcal{C P}_{3}$

- Bounding the degree of caterpillars to 3 changes the behavior when the alphabet sizes grow

Theorem 7 (BL, Ochem, Pinlou, 2018 ${ }^{+}$)
(i) $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$;
(ii) $\operatorname{RT}\left(3, \mathcal{C P}_{3}\right)=2$;
(iii) $\mathrm{RT}\left(4, \mathcal{C P}_{3}\right)=\frac{3}{2}$;
(iv) $\mathrm{RT}\left(5, \mathcal{C} \mathcal{P}_{3}\right)=\frac{4}{3}$;
(v) $\operatorname{RT}\left(k, \mathcal{C P}_{3}\right)=1+\frac{1}{\left\lceil\frac{k}{2}\right\rceil}$, for $k \geq 6$.

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right)=3$

First, prove $\operatorname{RT}(2, \mathcal{C P}) \leq 3$:

- There is a 2^{+}-free coloring of backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

First, prove $\mathrm{RT}(2, \mathcal{C P}) \leq 3$:

- There is a 2^{+}-free coloring of backbone
- Color every leaf with a color distinct from its neighbor

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor xyxy on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- Suppose there is factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
- Suppose there is factor $x y x$ on backbone

Proof of $\operatorname{RT}(2, \mathcal{C P})=\operatorname{RT}\left(2, \mathcal{C P}_{3}\right)=3$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone

■ Suppose there is factor $x y x$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$
- \Rightarrow there is no factor $x y x y$ on backbone
$■ \Rightarrow$ there is no factor $x y x$ on backbone

Proof of $\mathrm{RT}(2, \mathcal{C P})=\mathrm{RT}\left(2, \mathcal{C \mathcal { P } _ { 3 }) = 3}\right.$

Second, prove $\operatorname{RT}\left(2, \mathcal{C} \mathcal{P}_{3}\right) \geq 3$:

- Two colors $x, y \in\{0,1\}$
- There is no factor $x x x$

■ \Rightarrow there is no factor $x y x y$ on backbone
$■ \Rightarrow$ there is no factor $x y x$ on backbone

- So, the coloring of backbone is comprised of consecutive factors xxyy, a contradiction

RT of Subcubic Trees $-\mathcal{T}_{3}$

■ Similarly, bounding the degree of trees introduces additional hard problems

RT of Subcubic Trees $-\mathcal{T}_{3}$

- Similarly, bounding the degree of trees introduces additional hard problems

Theorem 8 (BL, Ochem, Pinlou, 2018 ${ }^{+}$)
(i) $\operatorname{RT}\left(4, \mathcal{T}_{3}\right)=\frac{3}{2}$;
(ii) $\operatorname{RT}\left(5, \mathcal{T}_{3}\right)=\frac{3}{2}$;
(iii) $\operatorname{RT}\left(k, \mathcal{T}_{3}\right)=1+\frac{1}{2 \log k}+o\left(\frac{1}{\log k}\right)$, for $k \geq 6$.

RT of Subcubic Trees $-\mathcal{T}_{3}$

■ Similarly, bounding the degree of trees introduces additional hard problems

Theorem 8 (BL, Ochem, Pinlou, 2018^{+})

(i) $\operatorname{RT}\left(4, \mathcal{T}_{3}\right)=\frac{3}{2}$;
(ii) $\operatorname{RT}\left(5, \mathcal{T}_{3}\right)=\frac{3}{2}$;
(iii) $\operatorname{RT}\left(k, \mathcal{T}_{3}\right)=1+\frac{1}{2 \log k}+o\left(\frac{1}{\log k}\right)$, for $k \geq 6$.

- Open: $k=2$ (known: $\left.3 \leq \operatorname{RT}\left(2, \mathcal{T}_{3}\right) \leq \frac{7}{2}\right)$
- Open: $k=3$ (known: $2 \leq \operatorname{RT}\left(3, \mathcal{T}_{3}\right) \leq 3$)

Proof of Theorem 8(iii)

- We prove it in a stronger form: $\operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right) \leq 1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right), t \geq 4$

Proof of Theorem 8(iii)

- We prove it in a stronger form: $\operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right) \leq 1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right), t \geq 4$
- First: $1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right)$

Proof of Theorem 8(iii)

- We prove it in a stronger form: $\operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right) \leq 1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right), t \geq 4$
- First: $1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right)$
- Take a full subcubic tree with $\left\lfloor\frac{t}{2}\right\rfloor$ levels

Proof of Theorem 8(iii)

■ We prove it in a stronger form: $\operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right) \leq 1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right), t \geq 4$

- First: $1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right)$
- Take a full subcubic tree with $\left\lfloor\frac{t}{2}\right\rfloor$ levels

Proof of Theorem 8(iii)

■ We prove it in a stronger form: $\operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right) \leq 1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right), t \geq 4$

- First: $1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right)$
- Take a full subcubic tree with $\left\lfloor\frac{t}{2}\right\rfloor$ levels

- It has diameter at most t

Proof of Theorem 8(iii)

- We prove it in a stronger form: $\operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right) \leq 1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right), t \geq 4$
- First: $1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right)$
- Take a full subcubic tree with $\left\lfloor\frac{t}{2}\right\rfloor$ levels

- It has diameter at most t
- In a $\left(1+\frac{1}{t}\right)^{+}$-free coloring, all vertices have distinct colors

Proof of Theorem 8(iii)

- We prove it in a stronger form: $\operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right) \leq 1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right), t \geq 4$
- First: $1+\frac{1}{t} \leq \operatorname{RT}\left(3\left(2^{\lfloor t / 2\rfloor}-1\right), \mathcal{T}_{3}\right)$
- Take a full subcubic tree with $\left\lfloor\frac{t}{2}\right\rfloor$ levels

- It has diameter at most t
- In a $\left(1+\frac{1}{t}\right)^{+}$-free coloring, all vertices have distinct colors
- There are $3\left(2^{\lfloor t / 2\rfloor}-1\right)+1$ vertices

Proof of Theorem 8(iii)

■ Second: $1+\frac{1}{t} \geq \operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right)$

Proof of Theorem 8(iii)

- Second: $1+\frac{1}{t} \geq \mathrm{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right)$
- Construct a $\left(1+\frac{1}{t}\right)^{+}$-free coloring: to each vertex assign a color (γ, λ), with $0 \leq \gamma \leq 2 t+1$ and $\lambda \in\{0,1\}^{\lfloor(t-1) / 2\rfloor}$

Proof of Theorem 8(iii)

- Second: $1+\frac{1}{t} \geq \mathrm{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right)$
- Construct a $\left(1+\frac{1}{t}\right)^{+}$-free coloring: to each vertex assign a color (γ, λ), with $0 \leq \gamma \leq 2 t+1$ and $\lambda \in\{0,1\}^{\lfloor(t-1) / 2\rfloor}$
- γ-component: Let w be a $\left(1+\frac{1}{t}\right)^{+}$-free word on $t+1$ letters. Let w^{\prime} be obtained from w by doubling every letter (we distinguish the doubled letters)

Proof of Theorem 8(iii)

- Second: $1+\frac{1}{t} \geq \operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right)$
- Construct a $\left(1+\frac{1}{t}\right)^{+}$-free coloring: to each vertex assign a color (γ, λ), with $0 \leq \gamma \leq 2 t+1$ and $\lambda \in\{0,1\}^{\lfloor(t-1) / 2\rfloor}$
- γ-component: Let w be a $\left(1+\frac{1}{t}\right)^{+}$-free word on $t+1$ letters. Let w^{\prime} be obtained from w by doubling every letter (we distinguish the doubled letters)
Example: if $w=a_{1} a_{2} a_{3}$ then $w^{\prime}=a_{1} a_{1}^{\prime} a_{2} a_{2}^{\prime} a_{3} a_{3}^{\prime}$

Proof of Theorem 8(iii)

- Second: $1+\frac{1}{t} \geq \mathrm{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right)$
- Construct a $\left(1+\frac{1}{t}\right)^{+}$-free coloring: to each vertex assign a color (γ, λ), with $0 \leq \gamma \leq 2 t+1$ and $\lambda \in\{0,1\}^{\lfloor(t-1) / 2\rfloor}$
- γ-component: Let w be a $\left(1+\frac{1}{t}\right)^{+}$-free word on $t+1$ letters. Let w^{\prime} be obtained from w by doubling every letter (we distinguish the doubled letters)
Example: if $w=a_{1} a_{2} a_{3}$ then $w^{\prime}=a_{1} a_{1}^{\prime} a_{2} a_{2}^{\prime} a_{3} a_{3}^{\prime}$
- λ-component: for a vertex v, let $u_{1}, \ldots, u_{\lfloor(t-1) / 2\rfloor}$ be its i-th ancestors, $1 \leq i \leq\left\lfloor\frac{t-1}{2}\right\rfloor$.

Proof of Theorem 8(iii)

- Second: $1+\frac{1}{t} \geq \operatorname{RT}\left((t+1) 2^{\lfloor(t+1) / 2\rfloor}, \mathcal{T}_{3}\right)$
- Construct a $\left(1+\frac{1}{t}\right)^{+}$-free coloring: to each vertex assign a color (γ, λ), with $0 \leq \gamma \leq 2 t+1$ and $\lambda \in\{0,1\}^{\lfloor(t-1) / 2\rfloor}$
- γ-component: Let w be a $\left(1+\frac{1}{t}\right)^{+}$-free word on $t+1$ letters. Let w^{\prime} be obtained from w by doubling every letter (we distinguish the doubled letters)
Example: if $w=a_{1} a_{2} a_{3}$ then $w^{\prime}=a_{1} a_{1}^{\prime} a_{2} a_{2}^{\prime} a_{3} a_{3}^{\prime}$
- λ-component: for a vertex v, let $u_{1}, \ldots, u_{\lfloor(t-1) / 2\rfloor}$ be its i-th ancestors, $1 \leq i \leq\left\lfloor\frac{t-1}{2}\right\rfloor$. The λ-component is a the $\frac{t-1}{2}$-dimensional binary vector with i-th component 0 if u_{i} is the left son of u_{i+1} and 1 otherwise. (If v does not have so many ancestors, we add 0 's to the missing components.)

Proof of Theorem 8(iii)

■ Suppose there is an α-repetition with $\alpha>t+\frac{1}{t}$

Proof of Theorem 8(iii)

■ Suppose there is an α-repetition with $\alpha>t+\frac{1}{t}$

- Suppose only one letter repeats, i.e. there is a factor axa with $|a x|<t$ (there are two vertices u and v of the same color within distance less than t)

Proof of Theorem 8(iii)

■ Suppose there is an α-repetition with $\alpha>t+\frac{1}{t}$

- Suppose only one letter repeats, i.e. there is a factor axa with $|a x|<t$ (there are two vertices u and v of the same color within distance less than t)
- u and v must be on the same level, otherwise they are at distance at least $2 t$, due to γ

Proof of Theorem 8(iii)

- Suppose there is an α-repetition with $\alpha>t+\frac{1}{t}$
- Suppose only one letter repeats, i.e. there is a factor axa with $|a x|<t$ (there are two vertices u and v of the same color within distance less than t)
- u and v must be on the same level, otherwise they are at distance at least $2 t$, due to γ
- since they have the same λ, their common ancestor is at distance at least $\lfloor(t-1) / 2\rfloor+1$ from each of them, so they are at distance at least $2(\lfloor(t-1) / 2\rfloor+1) \geq t$, a contradiction.

Proof of Theorem 8(iii)

- Suppose that at least two letters repeat

Proof of Theorem 8(iii)

■ Suppose that at least two letters repeat
■ Let $p=\ell_{i} \ell_{i-1} \ldots \ell_{1} u r_{1} \ldots r_{j}$ be the path supporting the repetition

Proof of Theorem 8(iii)

- Suppose that at least two letters repeat
- Let $p=\ell_{i} \ell_{i-1} \ldots \ell_{1} u r_{1} \ldots r_{j}$ be the path supporting the repetition
- Let $f\left(\ell_{k}\right) f\left(\ell_{k-1}\right)=f\left(r_{j-1}\right) f\left(r_{j}\right)$

Proof of Theorem 8(iii)

- Suppose that at least two letters repeat

■ Let $p=\ell_{i} \ell_{i-1} \ldots \ell_{1} u r_{1} \ldots r_{j}$ be the path supporting the repetition

- Let $f\left(\ell_{k}\right) f\left(\ell_{k-1}\right)=f\left(r_{j-1}\right) f\left(r_{j}\right)$

Proof of Theorem 8(iii)

- Suppose that at least two letters repeat
- Let $p=\ell_{i} \ell_{i-1} \ldots \ell_{1} u r_{1} \ldots r_{j}$ be the path supporting the repetition
- Let $f\left(\ell_{k}\right) f\left(\ell_{k-1}\right)=f\left(r_{j-1}\right) f\left(r_{j}\right)$

■ Since ℓ_{k-1} is the parent of ℓ_{k} and r_{j-1} is the parent of r_{j}, the γ-components cannot match

Proof of Theorem 8(iii)

- Suppose that at least two letters repeat

■ Let $p=\ell_{i} \ell_{i-1} \ldots \ell_{1} u r_{1} \ldots r_{j}$ be the path supporting the repetition

- Let $f\left(\ell_{k}\right) f\left(\ell_{k-1}\right)=f\left(r_{j-1}\right) f\left(r_{j}\right)$

- Since ℓ_{k-1} is the parent of ℓ_{k} and r_{j-1} is the parent of r_{j}, the γ-components cannot match
- So, all the vertices of p are on different levels, which means w^{\prime} and consequently w are not $\left(1+\frac{1}{t}\right)^{+}$-free, a contradiction

Summary

	$\|\mathbb{A}\|=2$	$\|\mathbb{A}\|=3$	$\|\mathbb{A}\|=4$	$\|\mathbb{A}\|=5$	$\|\mathbb{A}\|=k, k \geq 6$
\mathcal{P}	2	$\frac{7}{4}$	$\frac{7}{5}$	$\frac{5}{4}$	$\frac{k}{k-1}$
\mathcal{C}	$\frac{5}{2}$	2	$?$	$?$	$1+\frac{1}{\left\lceil\frac{k}{2}\right\rceil}$
\mathcal{S}	$\frac{7}{3}$	$\frac{7}{4}$	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
$\mathcal{C} \mathcal{P}_{3}$	3	2	$\frac{3}{2}$	$\frac{4}{3}$	$1+\frac{1}{\left\lceil\frac{k}{2}\right\rceil}$
\mathcal{T}_{3}	$?$	$?$	$\frac{3}{2}$	$\frac{3}{2}$	$1+\frac{1}{2 \log k}+o\left(\frac{1}{\log k}\right)$
$\mathcal{C P}$	3	2	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
\mathcal{T}	$\frac{7}{2}$	3	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$

References

I

Aberkane, A., and Currie, J. D.
There exist binary circular $5 / 2^{+}$power free words of every length.
Electron. J. Combin. 11 (2004), \#R10.
围 Alon, N., Grytczuk, J., Haluszczak, M., and Riordan, O.

Non-repetitive colorings of graphs.
Random Struct. Algor. 21 (2002), 336-346.
戋 Carpi, A.
On Dejean's conjecture over large alphabets.
Theoret. Comput. Sci. 385, 1-3 (2007), 137-151.

References

II

固 Currie，J．D．
Non－repetitive Walks in Graphs and Digraphs．
PhD thesis，University of Calgary，Alberta，Canada， 1987.
圊 Currie，J．D．
Which graphs allow infinite nonrepetitive walks？
Discrete Math． 87 （1991），249－260．
圊 Currie，J．D．
There are ternary circular square－free words of length n for $n \geq 18$ ．
Electron．J．Combin． 9 （2002），1－7．

References

III

囯 Currie，J．D．，and Rampersad，N．
Dejean＇s conjecture holds for $n \geq 27$ ．
RAIRO－Theoretical Informatics and Applications 43， 4 （2009）， 775－778．

目 Currie，J．D．，and Rampersad，N．
Dejean＇s conjecture holds for $n \geq 30$ ．
Theoret．Comput．Sci．410，30－32（2009），2885－2888．
凅 Currie，J．D．，and Rampersad，N．
A proof of Dejean＇s conjecture．
Math．Comp． 80 （2011），1063－1070．

References

IV

圊 Dejean，F．
Sur un théorème de Thue．
J．Combin．Theory Ser．A 13 （1972），90－99．
嗇 Gorbunova，I．A．
Repetition threshold for circular words．
Electron．J．Combin．19， 4 （2012），P11．
國 Lužar，B．，Ochem，P．，and Pinlou，A．
On repetition thresholds of caterpillars and trees of bounded degree． Electron．J．Combin．25， 1 （2018），\＃P1．61．

圊 Mohammad－Noori，M．，and Currie，J．D．
Dejean＇s conjecture and Sturmian words．
Europ．J．Combin．28， 3 （2007），876－890．

References

V

圊 Moulin Ollagnier，J．
Proof of Dejean＇s conjecture for alphabets with $5,6,7,8,9,10$ and 11 letters．
Theoret．Comput．Sci．95， 2 （1992），187－205．
围 Ochem，P．，and Vaslet，E．
Repetition thresholds for subdivided graphs and trees．
RAIRO－Theoretical Informatics and Applications 46， 1 （2012），
123－130．
圊 Pansiot，J．－J．
A propos d＇une conjecture de F ．Dejean sur les répétitions dans les mots．
Discrete Appl．Math．7， 3 （1984），297－311．

References

VI

圊 RaO, M.
Last cases of Dejean's conjecture.
Theoret. Comput. Sci. 412, 27 (2011), 3010-3018.
圊 Thue, A.
Über unendliche Zeichenreichen.
Norske Vid. Selsk. Skr., I Mat. Nat. Kl., Christiana 7 (1906), 1-22.

Thank you!

