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m We are interested in consecutive repetitions of subwords or
their parts
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Basic Notions

m A subword or a factor of a word w is a sequence of
consecutive letters in w.

ok is a factor of kokos

m A repetition in a word w is a factor consisting of two identical
consecutive factors

kokos banana ananas

m A word is non-repetitive if it contains no repetition
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Basic Notions

Thue [18] showed there exist infinite non-repetitive words on 3
letters

Various different constructions exist

Thue-Morse (0, 1) generator:

m start with wg =1

define morphism m as m(0) = 01 and m(1) = 10

define w; = m(w;_1)

from a word w; we construct a word x; as a sequence of
numbers of zeros between each pair of consecutive ones in w;

Example: ws = 10010110011010010110100110010110

xg = 210201210120210
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Basic Notions

What if there are several equal consecutive factors?

Having an alphabet with only two letters
A = {a, b}

it is impossible to construct a long non-repetitive word
a

ab

aba

aba?

Thue proved that there is an arbitrarily long word on two
letters without three equal consecutive factors
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Repetition Thresholds

m What if we do not require repetition of whole factors?

abcabcab abc is repeated 2 + 2 5= 8 times

m How low repetitiveness can be achieved W|th alphabets on k
letters?
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Repetition Thresholds

A generalized definition of a repetition:

m A prefix of a word w = wy ... w, isa word p = wy ... ws, for
some s < r
w = banana p = ban

m A repetition in a word w is a pair of words p (the period) and
e (the excess) such that pe is a factor of w, p is non-empty,
and e is a prefix of pe.

w = banana pe = anana p=an e = ana

m The exponent of a repetition pe is

exp(pe) — 2

exp(anana) = 3
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Repetition Thresholds

m A [-repetition is a repetition of exponent 3

m A word is a"-free if it contains no [3-repetition such that
8>«

m A word is a-free if it contains no S-repetition such that 5 > «

m For k > 2, the repetition threshold RT(k) for k letters is the

smallest o such that there exists an infinite at-free word over
a k-letter alphabet

m The notion of repetition thresholds was initiated by
Dejean [10] in 1972
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Repetition Thresholds - Results

m Repetition thresholds for words are completely solved

Theorem 1

(i) RT(2) = 2 [10];

(i) RT(3) = I [10];

(iii) RT(4) = £ [16];
)

(iv) RT(k) = &5, fork > 5 [3,7, 8,9, 13, 14, 16, 17].
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Repetition Thresholds in Graphs

m Study of non-repetitiveness has been generalized to graphs by
Currie [4, 5] and Alon et al. [2]

m For a k-vertex coloring of a graph, a sequence of colors on a
non-intersecting path is called a factor

m A vertex coloring is said to be a™-free (resp. a-free) if every
factor is at-free (resp. a-free)
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Repetition Thresholds in Graphs

m For a k-vertex colored graph G, the repetition threshold is

RT(k,G) = inf sup{exp(w)|w is a factor in c} .

kfcoloring c

m The repetition threshold over a whole class of graphs G is

defined as
RT(k,G) = sup RT(k, G).
Geg

m For the class of paths P the repetition thresholds are known,

since
RT(k, P) = RT(k)
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Theorem 2

(i) RT(2,C) =3 [1];
(i) RT(3,C) = 2 [6];
(iii) RT(k,C) =1+ (—;1 for k > 6 [11].
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Repetition Thresholds of Subdivisions - &

Theorem 5 (|15

(i) RT(2,8) = %;
(i) RT(3,8) = £,
(iii) RT(k,S) =3, for k > 4.

m A subdivision of a graph G is a graph obtained from G by a
sequence of edge subdivisions. By a graph subdivision, we
always mean a “large enough” subdivision



Repetition Thresholds of Caterpillars - CP

m A caterpillar is a tree such that the graph induced by the
vertices of degree at least 2 is a path (we call it a backbone)

Theorem 6 (BL, Ochem, Pinlou, 2018™)

(i) RT(2,CP) =3;
(ii) RT(3,CP) =2;
(i) RT(k,CP) =3, for k > 4.
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Proof of RT(2,CP) = RT(2,CP3) =3

Second, prove RT(2,CP3) > 3:
Two colors x,y € {0,1}

There is no factor xxx
= there is no factor xyxy on backbone
= there is no factor xyx on backbone

So, the coloring of backbone is comprised of consecutive
factors xxyy, a contradiction
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m Similarly, bounding the degree of trees introduces additional
hard problems

Theorem 8 (BL, Ochem, Pinlou, 2018")

X

(/) RT(4,7s)

3
2
(i) RT(5,T3) = 3;
1

(iif) RT(k,T3) = -l-ﬁﬁ-o( 1k>, for k > 6.

log
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m Similarly, bounding the degree of trees introduces additional
hard problems

Theorem 8 (BL, Ochem, Pinlou, 2018")

NI(JJ le

(7) RT(4,73)
(ii) RT(5,T3) =

(i) RT(k, T3) = 1+ iz + 0 (ke ). for k 2 6.

m Open: k =2 (known: 3 <RT(2,73) < %)
m Open: k=3 (known: 2 < RT(3,73) <3)
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m We prove it in a stronger form:
RT((¢+1)2lE0/2) 13y <141 <RT(3(214/2 -1),73), ¢t > 4

First: 1+ 1 <RT(3(21%/2/ —1),73)

Take a full subcubic tree with 5] levels

It has diameter at most t

Ina(1+ %)Jr—free coloring, all vertices have distinct colors
There are 3(2Lt/2) — 1) 4 1 vertices
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Second: 1+ 1 > RT((t + 1)2l(t+1)/2] 73)

Construct a (1 + })T-free coloring:

to each vertex assign a color (v, A),

with 0 <~ < 2t+1 and \ € {0,1}L(t=-1)/2)

~-component: Let w be a (1+ %)+—free word on t + 1 letters.
Let w’ be obtained from w by doubling every letter (we
distinguish the doubled letters)

Example: if w = a1 a a3 then w/ = a1a] axa) azal
A-component: for a vertex v, let u1,. .., ut_1)/2) be its i-th
ancestors, 1 < < Lt;—lj The A-component is a the
%—dimensional binary vector with /-th component 0 if u; is
the left son of uj; and 1 otherwise. (If v does not have so
many ancestors, we add 0's to the missing components.)
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m Suppose there is an a-repetition with o > t + %

m Suppose only one letter repeats, i.e. there is a factor axa with
lax| < t (there are two vertices u and v of the same color
within distance less than t)

- u and v must be on the same level, otherwise they are at
distance at least 2t, due to

- since they have the same A, their common ancestor is at
distance at least |(t — 1)/2] 4+ 1 from each of them, so they
are at distance at least 2(|(t —1)/2] 4+ 1) > t, a contradiction.
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m Suppose that at least two letters repeat

m let p=2{il;_1.. . liur...r; be the path supporting the
repetition

w Let F(0)f(Lk—1) = f(ri—1)f(r;)

b T
2 T9
l3 3
4
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Proof of Theorem 8(iii)

Suppose that at least two letters repeat

Let p=/ifi_1...lyury...r; be the path supporting the
repetition

Let £(€k)f(Ck—1) = F(ri—1)f(r;)

4 r1
2 T9
3 T3
4
Since f,_1 is the parent of ) and rj_; is the parent of r;, the
~-components cannot match

m So, all the vertices of p are on different levels, which means
w’ and consequently w are not (1 + %)Jr—free, a contradiction



Summary

A|=2 | |A|=3||Al=4]|A =5 Al =k, k>6

Pl [ 5 F ] =

C 3 2 ? ? 1+%

s [ 5 [+ 13 [ 3

CPs3 3 2 3 2 1+%

T3 ? ? 3 3 1+2|olgk+o<@)
CP 3 2 3 3 3

(2 I AT I I
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