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Basic Notions

Given an alphabet

A = {a1, a2, . . . , ak}

of k letters, a word

w = `1`2 · · · `n

of length n over A is a sequence of letters from A, i.e.,
`i ∈ A, for every 1 ≤ i ≤ n.

We are interested in consecutive repetitions of subwords or
their parts
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Basic Notions

Thue [18] showed there exist infinite non-repetitive words on 3
letters

Various different constructions exist

Thue-Morse (0, 1) generator:

start with w0 = 1
define morphism m as m(0) = 01 and m(1) = 10
define wi = m(wi−1)
from a word wi we construct a word xi as a sequence of
numbers of zeros between each pair of consecutive ones in wi

Example: w6 = 10010110011010010110100110010110

x6 = 210201210120210
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What if there are several equal consecutive factors?

Having an alphabet with only two letters

A = {a, b}

it is impossible to construct a long non-repetitive word

a
ab
aba
aba?

Thue proved that there is an arbitrarily long word on two
letters without three equal consecutive factors
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Repetition Thresholds

A generalized definition of a repetition:

A prefix of a word w = w1 . . .wr is a word p = w1 . . .ws , for
some s ≤ r

w = banana p = ban

A repetition in a word w is a pair of words p (the period) and
e (the excess) such that pe is a factor of w , p is non-empty,
and e is a prefix of pe.
w = banana pe = anana p = an e = ana

The exponent of a repetition pe is

exp(pe) = |pe|
|p|

exp(anana) = 5
2
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Repetition Thresholds

A β-repetition is a repetition of exponent β

A word is α+-free if it contains no β-repetition such that
β > α

A word is α-free if it contains no β-repetition such that β ≥ α
For k ≥ 2, the repetition threshold RT(k) for k letters is the
smallest α such that there exists an infinite α+-free word over
a k-letter alphabet

The notion of repetition thresholds was initiated by
Dejean [10] in 1972
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Repetition Thresholds - Results

Repetition thresholds for words are completely solved

Theorem 1

(i) RT(2) = 2 [10];

(ii) RT(3) = 7
4 [10];

(iii) RT(4) = 7
5 [16];

(iv) RT(k) = k
k−1 , for k ≥ 5 [3, 7, 8, 9, 13, 14, 16, 17].
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Study of non-repetitiveness has been generalized to graphs by
Currie [4, 5] and Alon et al. [2]

For a k-vertex coloring of a graph, a sequence of colors on a
non-intersecting path is called a factor

A vertex coloring is said to be α+-free (resp. α-free) if every
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For a k-vertex colored graph G , the repetition threshold is

RT(k,G ) = inf
k -coloring c

sup {exp(w) |w is a factor in c} .

The repetition threshold over a whole class of graphs G is
defined as

RT(k ,G) = sup
G∈G

RT(k ,G ) .

For the class of paths P the repetition thresholds are known,
since

RT(k ,P) = RT(k)
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Repetition Thresholds of Cycles - C

Theorem 2

(i) RT(2, C) = 5
2 [1];

(ii) RT(3, C) = 2 [6];

(iii) RT(k , C) = 1 + 1
d k

2
e , for k ≥ 6 [11].

Conjecture 3 ([11])

(i) RT(4, C) = 3
2 ;

(ii) RT(5, C) = 4
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Repetition Thresholds of Subdivisions - S

Theorem 5 ([15])

(i) RT(2,S) = 7
3 ;

(ii) RT(3,S) = 7
4 ;

(iii) RT(k ,S) = 3
2 , for k ≥ 4.

A subdivision of a graph G is a graph obtained from G by a
sequence of edge subdivisions. By a graph subdivision, we
always mean a “large enough” subdivision



Repetition Thresholds of Caterpillars - CP

A caterpillar is a tree such that the graph induced by the
vertices of degree at least 2 is a path (we call it a backbone)

Theorem 6 (BL, Ochem, Pinlou, 2018+)

(i) RT(2, CP) = 3;

(ii) RT(3, CP) = 2;

(iii) RT(k , CP) = 3
2 , for k ≥ 4.



RT of Subcubic Caterpillars - CP3

Bounding the degree of caterpillars to 3 changes the behavior
when the alphabet sizes grow

Theorem 7 (BL, Ochem, Pinlou, 2018+)
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(iii) RT(4, CP3) = 3
2 ;

(iv) RT(5, CP3) = 4
3 ;

(v) RT(k , CP3) = 1 + 1
d k

2
e , for k ≥ 6.
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Proof of RT(2, CP) = RT(2, CP3) = 3

First, prove RT(2, CP) ≤ 3:

There is a 2+-free coloring of backbone

Color every leaf with a color distinct from its neighbor
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RT of Subcubic Trees - T3

Similarly, bounding the degree of trees introduces additional
hard problems

Theorem 8 (BL, Ochem, Pinlou, 2018+)

(i) RT(4, T3) = 3
2 ;

(ii) RT(5, T3) = 3
2 ;

(iii) RT(k , T3) = 1 + 1
2 log k + o

(
1

log k

)
, for k ≥ 6.

Open: k = 2 (known: 3 ≤ RT(2, T3) ≤ 7
2 )

Open: k = 3 (known: 2 ≤ RT(3, T3) ≤ 3)
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Proof of Theorem 8(iii)

We prove it in a stronger form:
RT((t+1)2b(t+1)/2c, T3) ≤ 1+ 1

t ≤ RT(3(2bt/2c−1), T3), t ≥ 4

First: 1 + 1
t ≤ RT(3(2bt/2c − 1), T3)

Take a full subcubic tree with b t2c levels

It has diameter at most t

In a (1 + 1
t )+-free coloring, all vertices have distinct colors

There are 3(2bt/2c − 1) + 1 vertices
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Proof of Theorem 8(iii)

Second: 1 + 1
t ≥ RT((t + 1)2b(t+1)/2c, T3)

Construct a (1 + 1
t )+-free coloring:

to each vertex assign a color (γ, λ),
with 0 ≤ γ ≤ 2t + 1 and λ ∈ {0, 1}b(t−1)/2c

γ-component: Let w be a (1 + 1
t )+-free word on t + 1 letters.

Let w ′ be obtained from w by doubling every letter (we
distinguish the doubled letters)
Example: if w = a1 a2 a3 then w ′ = a1a

′
1 a2a

′
2 a3a

′
3

λ-component: for a vertex v , let u1, . . . , ub(t−1)/2c be its i-th

ancestors, 1 ≤ i ≤ b t−1
2 c. The λ-component is a the

t−1
2 -dimensional binary vector with i-th component 0 if ui is

the left son of ui+1 and 1 otherwise. (If v does not have so
many ancestors, we add 0’s to the missing components.)
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Proof of Theorem 8(iii)

Suppose there is an α-repetition with α > t + 1
t

Suppose only one letter repeats, i.e. there is a factor axa with
|ax | < t (there are two vertices u and v of the same color
within distance less than t)
- u and v must be on the same level, otherwise they are at
distance at least 2t, due to γ
- since they have the same λ, their common ancestor is at
distance at least b(t − 1)/2c+ 1 from each of them, so they
are at distance at least 2(b(t−1)/2c+ 1) ≥ t, a contradiction.
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Proof of Theorem 8(iii)

Suppose that at least two letters repeat

Let p = `i`i−1 . . . `1ur1 . . . rj be the path supporting the
repetition

Let f (`k)f (`k−1) = f (rj−1)f (rj)

`1 r1

u

r2

r3

`2

`3

`4

Since `k−1 is the parent of `k and rj−1 is the parent of rj , the
γ-components cannot match

So, all the vertices of p are on different levels, which means
w ′ and consequently w are not (1 + 1

t )+-free, a contradiction
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Summary

|A| = 2 |A| = 3 |A| = 4 |A| = 5 |A| = k , k ≥ 6

P 2 7
4

7
5

5
4

k
k−1

C 5
2 2 ? ? 1 + 1

d k
2
e

S 7
3

7
4

3
2

3
2

3
2

CP3 3 2 3
2

4
3 1 + 1

d k
2
e

T3 ? ? 3
2

3
2 1 + 1

2 log k + o
(

1
log k

)
CP 3 2 3

2
3
2

3
2

T 7
2 3 3

2
3
2

3
2
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