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Košice, October 16, 2018



The Problem

Problem 1 (Czap, Jendro© & Voigt [3])

Is there a bipartite plane graph such that its medial graph has
chromatic number 4?

In other words:

Is there a bipartite plane graph that needs 4 colors for
facially-proper edge-coloring?
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Facially-Proper Edge-Coloring

Facially-proper edge-coloring of a plane graph is a coloring
with edges consecutive on some facial trail (i.e.,
facially-adjacent edges) receiving distinct colors.
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Medial Graph

The medial graph M(G ) of a plane graph G :

V (M(G )) = E (G );
e, f ∈ V (M(G )) are adjacent if e, f are facially-adjacent in G .
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Medial Graph

Medial graphs of plane graphs are:

4-regular,
planar

⇒ 4-colorable.

Problem 1 reduces to investigating 3-colorability of planar
graphs with maximum degree 4;

Deciding whether a planar graph G with ∆(G ) = 4 admits a
3-coloring is NP-complete [8];

→ Lots of attention given to 3-colorability.
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3-Colorability of Planar Graphs

Theorem 2 (Heawood [11])

A plane triangulation is 3-colorable if and only if all its vertices
have even degree.

With many generalizations...

Theorem 3 (Grötzsch [9])

Every triangle-free planar graph is 3-colorable.

Improved by Grünbaum (and Aksenov) to planar graphs with
at most three triangles.
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3-Colorability of Planar Graphs with ∆’s

What if we allow many triangles in planar graphs?

Conjecture 4 (Havel [10])

There exists an absolute constant d such that if G is a planar
graph and every two distinct triangles in G are at distance at least
d , then G is 3-colorable.

Proved by Dvǒrák, Krá©, and Thomas [5].

Conjecture 5 (Steinberg [12])

Every planar graph without cycles of lengths 4 and 5 is 3-colorable.

Disproved by Cohen-Addad, Hebdige, Krá©, Li, and
Salgado [2].
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Proved by Dvǒrák, Krá©, and Thomas [5].

Conjecture 5 (Steinberg [12])

Every planar graph without cycles of lengths 4 and 5 is 3-colorable.

Disproved by Cohen-Addad, Hebdige, Krá©, Li, and
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3-Choosability of Planar Graphs

In the list setting Grötzsch’s result does not hold.

Theorem 6 (Voigt [14])

There are triangle-free planar graphs which are not 3-choosable.

Thomassen [13] proved having girth 5 is sufficient for
3-choosability;

Analogue of Havel’s conjecture (no 3-cycles and no 4-cycles)
was proved by Dvǒrák [4];

Many results of Steinberg’s type, currently the best by Dvǒrák
and Postle [6]: Planar graphs without cycles of lengths from 4
to 8 are 3-choosable;

Open: Are planar graphs without cycles of lengths from 4 to 7
(or even 6) 3-choosable?
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In the list setting Grötzsch’s result does not hold.

Theorem 6 (Voigt [14])

There are triangle-free planar graphs which are not 3-choosable.

Thomassen [13] proved having girth 5 is sufficient for
3-choosability;

Analogue of Havel’s conjecture (no 3-cycles and no 4-cycles)
was proved by Dvǒrák [4];
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and Postle [6]: Planar graphs without cycles of lengths from 4
to 8 are 3-choosable;

Open: Are planar graphs without cycles of lengths from 4 to 7
(or even 6) 3-choosable?

8 / 31



3-Choosability of Planar Graphs
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Our Result

Theorem 7 (Dross, BL, Maceková & Soták – 2018+)

Every loopless planar graph with maximum degree 4 obtained as a
subgraph of the medial graph of a bipartite plane graph is
3-choosable.

Answer to Problem 1 also in the list setting.
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Every loopless planar graph with maximum degree 4 obtained as a
subgraph of the medial graph of a bipartite plane graph is
3-choosable.

Answer to Problem 1 also in the list setting.

9 / 31



Sketch of Proof – 1

Structure of our graph:

medial graph G of a bipartite planar graph B with δ(B) ≥ 2;

⇒ two types of faces:

faces corresponding to vertices of B (black faces);
faces corresponding to faces of B (white faces);

White faces have even length;
No two black (or white) faces are adjacent;
⇒ The faces are properly 2-colored;
⇒ Every edge in G is incident with one black and one white
face;
Triangles are close & there are short cycles → still 3-choosable!
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Sketch of Proof – 2

Direct the edges such that each arc has its black face on the
left hand side when going from its initial to its terminal vertex
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Sketch of Proof – 3

Every vertex has precisely two incoming and two outgoing
arcs;

This is calling for. . .

Theorem 8 (Alon & Tarsi [1])

Let D be a directed graph, and let L be a list-assignment such that
|L(v)| ≥ d+

D (v) + 1 for each v ∈ V (D). If E e(D) 6= E o(D), then
D is L-colorable.

We need to prove that the number of even spanning Eulerian
subgraphs is different from the number of odd spanning
Eulerian subgraphs in G .
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Sketch of Proof – 4

Define the boundary, interior, and exterior of a plane Eulerian
graph H as follows:

First, color the faces of H properly with two colors (possible
since the dual of H is bipartite);

Let the outerface of H be colored green and its adjacent faces
blue;
The boundary of H, ∂(H), is the graph H itself;
The interior int(H) is the graph induced by the vertices of G
lying in the blue faces of H together with the vertices of H
without the edges of H;
The exterior ext(H) is the graph induced by the vertices of G
lying in the green faces of H together with the vertices of H
without the edges of H.

For a subgraph X of G , we define:

∂X (H) = ∂(H)∩X , intX (H) = int(H)∩X , extX (H) = ext(H)∩X .
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Sketch of Proof – 5

Observation 1

Let D1 and D2 be two directed cycles in G intersecting (i.e., having
some common vertices) in such a way that ∂(D2) ∩ int(D1) 6= ∅
and ∂(D2) ∩ ext(D1) 6= ∅. Then E (D1) ∩ E (D2) 6= ∅.

Implied by the choice of orientation: two consecutive edges on
a directed cycle are always consecutive on some facial trail.

possible not possible
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Sketch of Proof – 6

Next goal: Show that every odd Eulerian spanning subgraph
of G can be injectively mapped to an even Eulerian spanning
subgraph of G ;

By Observation 1, all edges of a given directed cycle C are
incident either to black faces or to white faces in the interior
of C ;

⇒ We distinguish two types of directed cycles in G :

black cycles;
white cycles.
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Sketch of Proof – 7

For a cycle D, the D-complement of a spanning Eulerian

subgraph X of G is the spanning Eulerian subgraph X
D

with
the edge set

E (X
D

) = E (extX (D)) ∪ E (intX (D)) ∪ E (∂X (D));

X
D

is also Eulerian by Observation 1.

17 / 31



Sketch of Proof – 7

For a cycle D, the D-complement of a spanning Eulerian

subgraph X of G is the spanning Eulerian subgraph X
D

with
the edge set

E (X
D

) = E (extX (D)) ∪ E (intX (D)) ∪ E (∂X (D));

X
D

is also Eulerian by Observation 1.

17 / 31



Sketch of Proof – 7 (Example)
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Sketch of Proof – 8

Claim 1

For an odd black cycle D, the D-complement of an odd (even)
Eulerian spanning subgraph X is an even (odd) Eulerian spanning

subgraph X
D

.

Claim 2

Let X be an Eulerian spanning subgraph of G , and let D be a
white odd Eulerian subgraph of X . Then, there is an odd black
cycle in intX (D) or int

X
D (D).
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Sketch of Proof – 9

E – the set of all Eulerian spanning subgraphs of G ;

O – a sorted set of all odd black cycles in G (sorted in
ascending order by number of faces in their interiors);

Suppose there are k cycles, C1,C2, . . . ,Ck , in O;

For every i , 1 ≤ i ≤ k, repeatedly remove all X ∈ E which
either contain all the edges of Ci or none of them;

If in the step i we remove from E some X , then we also
remove its Ci -complement;

Such pairs are always removed at the same step:

Claim 3

The number of odd Eulerian spanning subgraphs removed from E
at step i is equal to the number of even such subgraphs.
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Sketch of Proof – 10

After all cycles from O are removed, there is no odd Eulerian
spanning subgraph left in E ;

Claim 4

White faces of G can be colored with two colors, red and blue,
such that every odd black cycle shares an edge with the boundary
of at least one red and at least one blue face.

⇒ There is at least one even Eulerian spanning subgraph,
containing at least one edge of every odd cycle in G , but not
all edges of any!

⇒ There are more even Eulerian spanning subgraphs in G as
odd Eulerian spanning subgraphs;

21 / 31



Sketch of Proof – 10

After all cycles from O are removed, there is no odd Eulerian
spanning subgraph left in E ;

Claim 4

White faces of G can be colored with two colors, red and blue,
such that every odd black cycle shares an edge with the boundary
of at least one red and at least one blue face.

⇒ There is at least one even Eulerian spanning subgraph,
containing at least one edge of every odd cycle in G , but not
all edges of any!

⇒ There are more even Eulerian spanning subgraphs in G as
odd Eulerian spanning subgraphs;

21 / 31



Sketch of Proof – 10

After all cycles from O are removed, there is no odd Eulerian
spanning subgraph left in E ;

Claim 4

White faces of G can be colored with two colors, red and blue,
such that every odd black cycle shares an edge with the boundary
of at least one red and at least one blue face.

⇒ There is at least one even Eulerian spanning subgraph,
containing at least one edge of every odd cycle in G , but not
all edges of any!

⇒ There are more even Eulerian spanning subgraphs in G as
odd Eulerian spanning subgraphs;

21 / 31



Sketch of Proof – 10

After all cycles from O are removed, there is no odd Eulerian
spanning subgraph left in E ;

Claim 4

White faces of G can be colored with two colors, red and blue,
such that every odd black cycle shares an edge with the boundary
of at least one red and at least one blue face.

⇒ There is at least one even Eulerian spanning subgraph,
containing at least one edge of every odd cycle in G , but not
all edges of any!

⇒ There are more even Eulerian spanning subgraphs in G as
odd Eulerian spanning subgraphs;

21 / 31



Is Planarity Needed?

The planarity condition is crucial!

22 / 31



Is Planarity Needed?

The planarity condition is crucial!

22 / 31



Is Planarity Needed?

The planarity condition is crucial!

22 / 31



Is Planarity Needed?

The planarity condition is crucial!

22 / 31



Further Work

Conjecture 9

Every simple plane graph whose faces can be properly colored with
two colors such that one color class contains only even faces is
3-colorable.

Why no parallel edges?

Take any plane graph with chromatic number 4 and replace
every edge with two parallel edges.

Question 10

Is every simple plane graph whose faces can be properly colored
with two colors such that one color class contains only even faces
also 3-choosable?
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Further Discussion

Theorem 11 (Ellingham & Goddyn [7])

If G is a d-regular d-edge-colorable planar multigraph, then G is
d-edge-choosable.

Corollary 12 (Ellingham & Goddyn [7] + 4CT)

If G is a cubic planar multigraph, then G is 3-edge-choosable.

Coloring the edges of the graph properly, but...

medial graphs in cubic planar graphs are exactly their line
graphs.

Such graphs have two types of faces – one type are just
triangles.
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Further Discussion

Question 13 (Kaiser)

What if it suffices to have faces of one color/type of the same
parity?

Answer 14 (Soták)

Not enough!
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[9] Grötzsch, H.

Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel.

Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. 8
(1959), 109–120.

28 / 31



References
IV

[10] Havel, I.

On a Conjecture of B. Grünbaum.
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