Colorful Graph Theory

Borut Lužar

Faculty of Information Studies, Novo mesto, Slovenia
borut.luzar@gmail.com
http://luzar.fis.unm.si
19. Konferencia košických matematikov

Herl'any, April 13, 2018

Sunway TaihuLight

Sunway TaihuLight

- Ranked \#1 in the TOP500 list in March 2018 as the fastest supercomputer
- 93 petaflops $=93 \cdot 10^{15}$ flops (floating point operations per second)
■ 10,649,600 CPU cores

Parallel processing

■ Why supercomputers?

Parallel processing

- Why supercomputers?
- Top speed of processors is almost achieved

Parallel processing

■ Why supercomputers?

- Top speed of processors is almost achieved

■ Natural solution: more processors

Parallel processing

- Why supercomputers?
- Top speed of processors is almost achieved
- Natural solution: more processors

■ Parallel processing: computations executed at the same time

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;

- Every day one match per team;
- We have 7 days;

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;

- Every day one match per team;
- We have 7 days;
- Can we do it?

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;

- Every day one match per team;
- We have 7 days;
- Can we do it?

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;

- Every day one match per team;
- We have 7 days;
- Can we do it?

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;

- Every day one match per team;
- We have 7 days;
- Can we do it?

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;

- Every day one match per team;
- We have 7 days;
- Can we do it?

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;
■ Every day one match per team;

- We have 7 days;
- Can we do it?

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;

- Every day one match per team;
- We have 7 days;
- Can we do it?

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;
■ Every day one match per team;

- We have 7 days;
- Can we do it?

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;
■ Every day one match per team;

- We have 7 days;
- Can we do it?

Simple Example

- 8 ice hockey teams;

■ Each team plays each team;

- Every day one match per team;
- We have 7 days;
- Can we do it?

Simple Example

■ 8 ice hockey teams;
■ Each team plays each team;
■ Every day one match per team;

- We have 7 days;
- Can we do it?

Simple Example

■ 8 ice hockey teams;
■ Each team plays each team;
■ Every day one match per team;

- We have 7 days;
- Can we do it?

Simple Example

■ 8 ice hockey teams;
■ Each team plays each team;
■ Every day one match per team;

- We have 7 days;
- Can we do it?

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

- Edge-coloring is proper if adjacent edges receive distinct colors

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

- Edge-coloring is proper if adjacent edges receive distinct colors
- The smallest integer k for which G admits a (proper) k-edge-coloring is called the chromatic index of $G, \chi^{\prime}(G)$

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

- Edge-coloring is proper if adjacent edges receive distinct colors
- The smallest integer k for which G admits a (proper) k-edge-coloring is called the chromatic index of $G, \chi^{\prime}(G)$

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

- Edge-coloring is proper if adjacent edges receive distinct colors
- The smallest integer k for which G admits a (proper) k-edge-coloring is called the chromatic index of $G, \chi^{\prime}(G)$

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

- Edge-coloring is proper if adjacent edges receive distinct colors
- The smallest integer k for which G admits a (proper) k-edge-coloring is called the chromatic index of $G, \chi^{\prime}(G)$

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

- Edge-coloring is proper if adjacent edges receive distinct colors
- The smallest integer k for which G admits a (proper) k-edge-coloring is called the chromatic index of $G, \chi^{\prime}(G)$

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

- Edge-coloring is proper if adjacent edges receive distinct colors
- The smallest integer k for which G admits a (proper) k-edge-coloring is called the chromatic index of $G, \chi^{\prime}(G)$

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

- Edge-coloring is proper if adjacent edges receive distinct colors
- The smallest integer k for which G admits a (proper) k-edge-coloring is called the chromatic index of $G, \chi^{\prime}(G)$

Basics

■ For a graph $G=(V, E)$, a k-edge-coloring is a function

$$
f: E \rightarrow\{1,2, \ldots, k\}
$$

(we can think of the k values as colors...)

- Edge-coloring is proper if adjacent edges receive distinct colors
- The smallest integer k for which G admits a (proper) k-edge-coloring is called the chromatic index of $G, \chi^{\prime}(G)$

Vizing's Theorem

■ Main goal: determine chromatic index as accurate as possible (for a selected class of graphs)!

Vizing's Theorem

■ Main goal: determine chromatic index as accurate as possible (for a selected class of graphs)!
■ Lower bound is trivial: adjacent edges must receive distinct colors, so

$$
\Delta(G) \leq \chi^{\prime}(G)
$$

Vizing's Theorem

■ Main goal: determine chromatic index as accurate as possible (for a selected class of graphs)!
■ Lower bound is trivial: adjacent edges must receive distinct colors, so

$$
\Delta(G) \leq \chi^{\prime}(G)
$$

■ Upper bound?

Vizing's Theorem

■ Main goal: determine chromatic index as accurate as possible (for a selected class of graphs)!

- Lower bound is trivial: adjacent edges must receive distinct colors, so

$$
\Delta(G) \leq \chi^{\prime}(G)
$$

■ Upper bound?
Theorem 1 (Vizing, 1964)
For every (simple) graph G

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Theorem

■ One color more than the lower bound suffices!

Vizing's Theorem

- One color more than the lower bound suffices!
- When is it needed?

Vizing's Theorem

- One color more than the lower bound suffices!
- When is it needed?
- Three ice-hockey teams;
- Each team plays each team;

■ Every day one match per team;
■ How many days?

Vizing's Theorem

- One color more than the lower bound suffices!
- When is it needed?
- Three ice-hockey teams;

■ Each team plays each team;

- Every day one match per team;

■ How many days? 3!

Bipartite and complete graphs

Theorem 2 (König, 1916)

For every bipartite graph G

$$
\chi^{\prime}(G)=\Delta(G) .
$$

Bipartite and complete graphs

Theorem 2 (König, 1916)

For every bipartite graph G

$$
\chi^{\prime}(G)=\Delta(G)
$$

- For complete graphs $K_{2 k}$, we have $2 k-1$ disjoint perfect matchings; we assign the same color to all edges of a matching, so:

$$
\chi^{\prime}\left(K_{2 k}\right)=\Delta\left(K_{2 k}\right)=2 k-1
$$

Complete graphs of odd order need additional color:

$$
\chi^{\prime}\left(K_{2 k+1}\right)=\Delta\left(K_{2 k+1}\right)+1=2 k+1 .
$$

Adding assumptions

- How do the bounds for chromatic index change if we add additional assumptions to the coloring?

Adding assumptions

- How do the bounds for chromatic index change if we add additional assumptions to the coloring?
- We will focus on three types:
- Acyclic edge-coloring;
- Strong edge-coloring;
- Locally irregular edge-coloring.

Acyclic edge-coloring

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.
- The smallest k for which an acyclic k-edge coloring of G exists is the acyclic chromatic index of $G, \chi_{a}^{\prime}(G)$.

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.
- The smallest k for which an acyclic k-edge coloring of G exists is the acyclic chromatic index of $G, \chi_{a}^{\prime}(G)$.

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.
- The smallest k for which an acyclic k-edge coloring of G exists is the acyclic chromatic index of $G, \chi_{a}^{\prime}(G)$.

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.
- The smallest k for which an acyclic k-edge coloring of G exists is the acyclic chromatic index of $G, \chi_{a}^{\prime}(G)$.

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.
- The smallest k for which an acyclic k-edge coloring of G exists is the acyclic chromatic index of $G, \chi_{a}^{\prime}(G)$.

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.
- The smallest k for which an acyclic k-edge coloring of G exists is the acyclic chromatic index of $G, \chi_{a}^{\prime}(G)$.

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.
- The smallest k for which an acyclic k-edge coloring of G exists is the acyclic chromatic index of $G, \chi_{a}^{\prime}(G)$.

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.
- The smallest k for which an acyclic k-edge coloring of G exists is the acyclic chromatic index of $G, \chi_{a}^{\prime}(G)$.

Acyclic edge-coloring

- An acyclic k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every cycle are assigned at least three distinct colors, i.e., there are no bichromatic cycles.
- The smallest k for which an acyclic k-edge coloring of G exists is the acyclic chromatic index of $G, \chi_{a}^{\prime}(G)$.

- So, $\chi_{a}^{\prime}\left(K_{4}\right)=5=\Delta\left(K_{4}\right)+2$

The Conjecture

Conjecture 3 (Fiamčík, 1978; Alon, Sudakov, Zaks, 2001)
For every graph G it holds

$$
\Delta(G) \leq \chi_{a}^{\prime}(G) \leq \Delta(G)+2
$$

The Conjecture

Conjecture 3 (Fiamčík, 1978; Alon, Sudakov, Zaks, 2001)
For every graph G it holds

$$
\Delta(G) \leq \chi_{a}^{\prime}(G) \leq \Delta(G)+2
$$

- Only one additional color is enough?!

The Conjecture

Conjecture 3 (Fiamčík, 1978; Alon, Sudakov, Zaks, 2001)
For every graph G it holds

$$
\Delta(G) \leq \chi_{a}^{\prime}(G) \leq \Delta(G)+2
$$

- Only one additional color is enough?!
- If G is d-regular, then $\chi_{a}^{\prime}(G) \geq d+1$.

The Conjecture

Conjecture 3 (Fiamčík, 1978; Alon, Sudakov, Zaks, 2001)

For every graph G it holds

$$
\Delta(G) \leq \chi_{a}^{\prime}(G) \leq \Delta(G)+2
$$

- Only one additional color is enough?!
- If G is d-regular, then $\chi_{a}^{\prime}(G) \geq d+1$.

Otherwise, every pair of colors induces a 2-factor, since every color is present at every vertex.

The Conjecture

Conjecture 3 (Fiamčík, 1978; Alon, Sudakov, Zaks, 2001)
For every graph G it holds

$$
\Delta(G) \leq \chi_{a}^{\prime}(G) \leq \Delta(G)+2
$$

- Only one additional color is enough?!
- If G is d-regular, then $\chi_{a}^{\prime}(G) \geq d+1$.

Otherwise, every pair of colors induces a 2-factor, since every color is present at every vertex.

- Conjecture 3 is not confirmed even for complete graphs!

Perfect 1-factorization

Conjecture 4 (Kotzig, 1964)

For every $n \geq 2, K_{2 n}$ can be decomposed into $2 n-1$ perfect matchings such that the union of any two matchings forms a hamiltonian cycle in $K_{2 n}$.

- Closely related to acyclic edge-colorings.
- If the Conjecture 4 is true, the removal of one vertex from $K_{2 n}$ results in an acyclic edge coloring of $K_{2 n-1}$ with $2 n-1=\Delta\left(K_{2 n-1}\right)+1$ colors, which is optimal.

Perfect 1-factorization

Conjecture 4 (Kotzig, 1964)

For every $n \geq 2, K_{2 n}$ can be decomposed into $2 n-1$ perfect matchings such that the union of any two matchings forms a hamiltonian cycle in $K_{2 n}$.

- Closely related to acyclic edge-colorings.
- If the Conjecture 4 is true, the removal of one vertex from $K_{2 n}$ results in an acyclic edge coloring of $K_{2 n-1}$ with $2 n-1=\Delta\left(K_{2 n-1}\right)+1$ colors, which is optimal.
- If K_{n+1} has perfect 1-factorization, then $K_{n, n}$ has it also.

Perfect 1-factorization

Perfect 1-factorization

Perfect 1-factorization

Perfect 1－factorization

Perfect 1－factorization

Perfect 1－factorization

Perfect 1-factorization

Perfect 1－factorization

Perfect 1-factorization

General graphs

■ Several upper bounds for acyclic chromatic index have been proven repeatedly, all using probabilistic approaches

General graphs

- Several upper bounds for acyclic chromatic index have been proven repeatedly, all using probabilistic approaches

Theorem 5 (Giotis et al., 2017)

For every graph G it holds

$$
\chi_{a}^{\prime}(G) \leq\lceil 3.74(\Delta(G)-1)\rceil+1
$$

General graphs

- Several upper bounds for acyclic chromatic index have been proven repeatedly, all using probabilistic approaches

Theorem 5 (Giotis et al., 2017)

For every graph G it holds

$$
\chi_{a}^{\prime}(G) \leq\lceil 3.74(\Delta(G)-1)\rceil+1
$$

Theorem 6 (Alon, Sudakov, Zaks, 2001)

For every graph G with girth at least $C \Delta(G) \log \Delta(G)$, for a constant C, it holds

$$
\chi_{a}^{\prime}(G) \leq \Delta(G)+2 .
$$

Subcubic graphs

- The notion of acyclic colorings was first introduced in 1973 by Grűnbaum for the vertex version. In 1979, Burnstein proved that 5 colors suffice for acyclic vertex coloring of every graph G with $\Delta(G) \leq 4$.

Subcubic graphs

- The notion of acyclic colorings was first introduced in 1973 by Grűnbaum for the vertex version. In 1979, Burnstein proved that 5 colors suffice for acyclic vertex coloring of every graph G with $\Delta(G) \leq 4$.
- The maximum degree of the line graph $L(G)$ of a subcubic graph G is at most 4...

Subcubic graphs

- The notion of acyclic colorings was first introduced in 1973 by Grűnbaum for the vertex version. In 1979, Burnstein proved that 5 colors suffice for acyclic vertex coloring of every graph G with $\Delta(G) \leq 4$.
- The maximum degree of the line graph $L(G)$ of a subcubic graph G is at most 4...

Corollary 7 (Burnstein, 1979)

Let G be a subcubic graph. Then

$$
\chi_{a}^{\prime}(G) \leq 5 .
$$

Planar graphs

■ Another candidate class of graphs to confirm Conjecture 4

Planar graphs

- Another candidate class of graphs to confirm Conjecture 4
- Confirmed for triangle-free planar graphs

Planar graphs

- Another candidate class of graphs to confirm Conjecture 4
- Confirmed for triangle-free planar graphs
- In general we are close...

Planar graphs

■ Another candidate class of graphs to confirm Conjecture 4

- Confirmed for triangle-free planar graphs
- In general we are close...

Theorem 8 (Wang, Zhang, 2017+)
Let G be a planar graph. Then

$$
\chi_{a}^{\prime}(G) \leq \Delta(G)+6 .
$$

Planar graphs - Δ colors

■ Cohen, Havet and Müller conjectured that every planar graph G with large enough maximum degree has $\chi_{a}^{\prime}(G)=\Delta$ (note the analogy to Vizing's conjecture)

Planar graphs - Δ colors

■ Cohen, Havet and Müller conjectured that every planar graph G with large enough maximum degree has $\chi_{a}^{\prime}(G)=\Delta$ (note the analogy to Vizing's conjecture)

Theorem 9 (Cranston, 2017+)

Let G be a planar graph with $\Delta(G) \geq 4.2 \cdot 10^{14}$. Then

$$
\chi_{a}^{\prime}(G)=\Delta(G)
$$

Planar graphs - Δ colors

■ We considered the problem with the girth condition added.

Planar graphs - Δ colors

■ We considered the problem with the girth condition added.

Theorem 10 (Húdak et al., 2012)

Let G be a planar graph with girth g and maximum degree Δ. Then $\chi_{a}^{\prime}(G)=\Delta$ if one of the following conditions holds:

- $\Delta \geq 3$ and $g \geq 12$, or
- $\Delta \geq 4$ and $g \geq 8$, or
- $\Delta \geq 5$ and $g \geq 7$, or
- $\Delta \geq 6$ and $g \geq 6$, or
- $\Delta \geq 10$ and $g \geq 5$.

Strong edge-coloring

Definition

■ Distance between edges: distance between corresponding vertices in the line graph (adjacent edges are at distance 1)

Definition

■ Distance between edges: distance between corresponding vertices in the line graph (adjacent edges are at distance 1)

- A strong k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every path of length 3 have three distinct colors, i.e., not only incident edges but also the edges at distance 2 have distinct colors.

Definition

■ Distance between edges: distance between corresponding vertices in the line graph (adjacent edges are at distance 1)

- A strong k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every path of length 3 have three distinct colors, i.e., not only incident edges but also the edges at distance 2 have distinct colors.
- The smallest k for which G admits a strong k-edge-coloring is the strong chromatic index of $G, \chi_{s}^{\prime}(G)$.

Definition

■ Distance between edges: distance between corresponding vertices in the line graph (adjacent edges are at distance 1)

- A strong k-edge-coloring of a graph G is a proper k-edge-coloring where the edges of every path of length 3 have three distinct colors, i.e., not only incident edges but also the edges at distance 2 have distinct colors.
- The smallest k for which G admits a strong k-edge-coloring is the strong chromatic index of $G, \chi_{s}^{\prime}(G)$.
- Strong edge coloring of G is a vertex 2-distance coloring of its line graph $L(G)$

$$
\chi_{s}^{\prime}(G)=\chi\left(L(G)^{2}\right)
$$

Example

Example

Example

Example

Example

Example

$\chi_{s}^{\prime}(G)=7$

The Conjecture

- Strong edge-coloring was initiated by Fouquet and Jolivet in 1982.

The Conjecture

■ Strong edge-coloring was initiated by Fouquet and Jolivet in 1982.

■ Erdős and Nešetřil in 1985 proposed a conjecture on the upper bound.

The Conjecture

- Strong edge-coloring was initiated by Fouquet and Jolivet in 1982.

■ Erdős and Nešetřil in 1985 proposed a conjecture on the upper bound.

Conjecture 11 (Erdős, Nešetřil, 1985)

For every graph G it holds

$$
\chi_{s}^{\prime}(G) \leq\left\{\begin{array}{cl}
\frac{5}{4} \Delta(G)^{2}, & \Delta(G) \text { is even; } \\
\frac{1}{4}\left(5 \Delta(G)^{2}-2 \Delta(G)+1\right), & \Delta(G) \text { is odd }
\end{array}\right.
$$

The Conjecture

- The bounds in Conjecture 11 are tight for every Δ :

The Conjecture

The construction of graphs achieving the conjectured bound:

- For even Δ replace each vertex of a 5 -cycle with $\frac{\Delta}{2}$ vertices;

■ For odd Δ replace two consecutive vertices of a 5 -cycle with $\frac{\Delta+1}{2}$ vertices and the others with $\frac{\Delta-1}{2}$ vertices.

General graphs

■ By greedy method, we have $\chi_{s}^{\prime}(G) \leq 2 \Delta(G)(\Delta(G)-1)+1$

General graphs

■ By greedy method, we have $\chi_{s}^{\prime}(G) \leq 2 \Delta(G)(\Delta(G)-1)+1$

- As in the acyclic case, several upper bounds have been proven repeatedly, all using probabilistic approaches

General graphs

- By greedy method, we have $\chi_{s}^{\prime}(G) \leq 2 \Delta(G)(\Delta(G)-1)+1$
- As in the acyclic case, several upper bounds have been proven repeatedly, all using probabilistic approaches

Theorem 12 (Bonamy, Perret, Postle, 2017+)

For every graph G with sufficiently large maximum degree it holds

$$
\chi_{s}^{\prime}(G) \leq 1.835 \Delta(G)^{2}
$$

Subcubic \& Subquartic graphs

Theorem 13 (Andersen, 1992)

Let G be a graph with $\Delta(G)=3$. Then,

$$
\chi_{s}^{\prime}(G) \leq 10 .
$$

Subcubic \& Subquartic graphs

Theorem 13 (Andersen, 1992)
Let G be a graph with $\Delta(G)=3$. Then,

$$
\chi_{s}^{\prime}(G) \leq 10 .
$$

Theorem 14 (Cranston, 2006)
Let G be a graph with $\Delta(G)=4$. Then,

$$
\chi_{s}^{\prime}(G) \leq 22 .
$$

Bipartite graphs

Conjecture 15 (Faudree et al., 1990)
Let G be a bipartite graph. Then,

$$
\chi_{s}^{\prime}(G) \leq \Delta(G)^{2} .
$$

Bipartite graphs

Conjecture 15 (Faudree et al., 1990)
Let G be a bipartite graph. Then,

$$
\chi_{s}^{\prime}(G) \leq \Delta(G)^{2} .
$$

- And even stronger version:

Bipartite graphs

Conjecture 15 (Faudree et al., 1990)
Let G be a bipartite graph. Then,

$$
\chi_{s}^{\prime}(G) \leq \Delta(G)^{2} .
$$

- And even stronger version:

Conjecture 16 (Brualdi, Quinn Massey, 1993)

If G is bipartite graph with maximum degree of partite sets Δ_{1} and Δ_{2}, then

$$
\chi_{s}^{\prime}(G) \leq \Delta_{1} \cdot \Delta_{2} .
$$

Bipartite graphs

Theorem 17 (Steger, Yu, 1993)

Let G be a subcubic bipartite graph. Then,

$$
\chi_{s}^{\prime}(G) \leq 9 .
$$

Bipartite graphs

Theorem 17 (Steger, Yu, 1993)

Let G be a subcubic bipartite graph. Then,

$$
\chi_{s}^{\prime}(G) \leq 9 .
$$

Theorem 18 (Nakprasit, 2008)

Let G be a bipartite graph with maximum degree of partite sets 2 and Δ, then

$$
\chi_{s}^{\prime}(G) \leq 2 \Delta
$$

Bipartite graphs

Theorem 17 (Steger, Yu, 1993)

Let G be a subcubic bipartite graph. Then,

$$
\chi_{s}^{\prime}(G) \leq 9 .
$$

Theorem 18 (Nakprasit, 2008)

Let G be a bipartite graph with maximum degree of partite sets 2 and Δ, then

$$
\chi_{s}^{\prime}(G) \leq 2 \Delta
$$

■ For $(3, \Delta)$-graphs there is a weaker result: $\chi_{s}^{\prime}(G) \leq 4 \Delta$

Planar graphs

Theorem 19 (Faudree et al., 1990)

Let G be a planar graph. Then,

$$
\chi_{s}^{\prime}(G) \leq 4 \Delta(G)+4 .
$$

Planar graphs

Theorem 19 (Faudree et al., 1990)

Let G be a planar graph. Then,

$$
\chi_{s}^{\prime}(G) \leq 4 \Delta(G)+4 .
$$

Proof.

- Color G properly with $\chi^{\prime}(G)$ colors

Planar graphs

Theorem 19 (Faudree et al., 1990)

Let G be a planar graph. Then,

$$
\chi_{s}^{\prime}(G) \leq 4 \Delta(G)+4 .
$$

Proof.

- Color G properly with $\chi^{\prime}(G)$ colors

■ Let M_{i} be the set of the edges of same color. Let $G\left(M_{i}\right)$ be a graph induced by M_{i} where every edge from M_{i} is contracted

Planar graphs

Theorem 19 (Faudree et al., 1990)

Let G be a planar graph. Then,

$$
\chi_{s}^{\prime}(G) \leq 4 \Delta(G)+4
$$

Proof.

- Color G properly with $\chi^{\prime}(G)$ colors
$■$ Let M_{i} be the set of the edges of same color. Let $G\left(M_{i}\right)$ be a graph induced by M_{i} where every edge from M_{i} is contracted
■ Since $G\left(M_{i}\right)$ is planar, its vertices (the edges of M_{i}) can be colored with 4 colors by the Four Color Theorem, hence all the edges with a common edge receive distinct color

Planar graphs

Theorem 19 (Faudree et al., 1990)

Let G be a planar graph. Then,

$$
\chi_{s}^{\prime}(G) \leq 4 \Delta(G)+4
$$

Proof.

- Color G properly with $\chi^{\prime}(G)$ colors

■ Let M_{i} be the set of the edges of same color. Let $G\left(M_{i}\right)$ be a graph induced by M_{i} where every edge from M_{i} is contracted
■ Since $G\left(M_{i}\right)$ is planar, its vertices (the edges of M_{i}) can be colored with 4 colors by the Four Color Theorem, hence all the edges with a common edge receive distinct color

- Altogether we need $4 \chi^{\prime}(G)$ colors

Planar graphs

- The above bound is pretty tight: Faudree et al. presented a construction of planar graphs with $\chi_{s}^{\prime}(G)=4 \Delta(G)-4$

Planar graphs

- The above bound is pretty tight: Faudree et al. presented a construction of planar graphs with $\chi_{s}^{\prime}(G)=4 \Delta(G)-4$
■ Join two copies of $K_{2, m}$ along a fixed 4-cycle.

Planar graphs

- The above bound is pretty tight: Faudree et al. presented a construction of planar graphs with $\chi_{s}^{\prime}(G)=4 \Delta(G)-4$
- Join two copies of $K_{2, m}$ along a fixed 4-cycle.

Planar graphs

■ Forbidding short cycles in planar graphs, gives us some more freedom

Planar graphs

■ Forbidding short cycles in planar graphs, gives us some more freedom

Conjecture 20 (Hudák et al., 2014)

There exists a constant C such that for every planar graph G with girth $g \geq 5$ it holds

$$
\chi_{s}^{\prime}(G) \leq\left\lceil\frac{2 g(\Delta(G)-1)}{g-1}\right\rceil+C
$$

Locally irregular edge-coloring

Basics

■ A graph G is locally irregular if every two adjacent vertices have distinct degrees.

- An edge-coloring is locally irregular if every color class induces a locally irregular graph.

Basics

■ A graph G is locally irregular if every two adjacent vertices have distinct degrees.

- An edge-coloring is locally irregular if every color class induces a locally irregular graph.
- Always improper - paths of odd length do not admit such a coloring
- Introduced by Baudon, Bensmail, Przybyło, and Woźniak in 2013 (the paper published in 2015).

Basics

■ A graph G is locally irregular if every two adjacent vertices have distinct degrees.

- An edge-coloring is locally irregular if every color class induces a locally irregular graph.
- Always improper - paths of odd length do not admit such a coloring
- Introduced by Baudon, Bensmail, Przybyło, and Woźniak in 2013 (the paper published in 2015).
- Motivated by the (1-2-3)-Conjecture:

For every graph with no K_{2} component there exists an edge weighting with 1,2 , and 3 such that for every two adjacent vertices the sums on their incident edges are distinct.

Example: K_{5}

■ A test for the audience... How many colors?

Example: K_{5}

- Correct!

Example: K_{5}

- And now - add one edge:

Example: K_{5}

- And now - add one edge:

Example: K_{5}

- And now - add one edge:

Example: K_{5}

- And now - add one edge:

Decomposable graphs

- A graph is decomposable if it admits a locally irregular edge-coloring (LIE-C).
- The minimum k for which there is a LIE-C of a graph G with k colors is the locally irregular chromatic index of $G, \chi_{\text {irr }}^{\prime}(G)$.

Decomposable graphs

- A graph is decomposable if it admits a locally irregular edge-coloring (LIE-C).
- The minimum k for which there is a LIE-C of a graph G with k colors is the locally irregular chromatic index of $G, \chi_{\text {irr }}^{\prime}(G)$.
■ Not all graphs are decomposable, e.g. odd-length paths, odd-length cycles.
- A complete characterization was given by Baudon, Bensmail, Przybyło, and Woźniak.

Decomposable graphs

Define a family of graphs \mathcal{T} recursively:

- The triangle C_{3} belongs to \mathcal{T}.
- Every other graph of this family can be constructed by taking an auxiliary graph F which might either be a path of even length or a path of odd length with a triangle glued to one end, then choosing a graph $G \in \mathcal{T}$ containing a triangle with at least one vertex v of degree 2 and finally identifying v with a vertex of degree 1 in F.

Decomposable graphs

Define a family of graphs \mathcal{T} recursively:

- The triangle C_{3} belongs to \mathcal{T}.
- Every other graph of this family can be constructed by taking an auxiliary graph F which might either be a path of even length or a path of odd length with a triangle glued to one end, then choosing a graph $G \in \mathcal{T}$ containing a triangle with at least one vertex v of degree 2 and finally identifying v with a vertex of degree 1 in F.

Decomposable graphs

Define a family of graphs \mathcal{T} recursively:

- The triangle C_{3} belongs to \mathcal{T}.
- Every other graph of this family can be constructed by taking an auxiliary graph F which might either be a path of even length or a path of odd length with a triangle glued to one end, then choosing a graph $G \in \mathcal{T}$ containing a triangle with at least one vertex v of degree 2 and finally identifying v with a vertex of degree 1 in F.

Decomposable graphs

Define a family of graphs \mathcal{T} recursively:

- The triangle C_{3} belongs to \mathcal{T}.
- Every other graph of this family can be constructed by taking an auxiliary graph F which might either be a path of even length or a path of odd length with a triangle glued to one end, then choosing a graph $G \in \mathcal{T}$ containing a triangle with at least one vertex v of degree 2 and finally identifying v with a vertex of degree 1 in F.

The Conjecture

Conjecture 21 (Baudon et al., 2015)

For every decomposable graph G, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 3$.

The Conjecture

Conjecture 21 (Baudon et al., 2015)
For every decomposable graph G, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 3$.
The conjecture, if true, is tight; consider e.g. C_{6}.

The Conjecture

Conjecture 21 (Baudon et al., 2015)
For every decomposable graph G, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 3$.
The conjecture, if true, is tight; consider e.g. C_{6}.

Theorem 22 (Baudon et al., 2015)
For every d-regular graph G, with $d \geq 10^{7}$, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 3$.

The Conjecture

Conjecture 21 (Baudon et al., 2015)

For every decomposable graph G, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 3$.
The conjecture, if true, is tight; consider e.g. C_{6}.

Theorem 22 (Baudon et al., 2015)
For every d-regular graph G, with $d \geq 10^{7}$, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 3$.

Theorem 23 (Przybyło, 2016)
For every graph G, with $\delta(G) \geq 10^{10}$, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 3$.

The upper bound

Bensmail, Merker, and Thomassen established the first constant upper bound using decompositions into bipartite graphs.

Theorem 24 (Bensmail et al., 2017)

For every decomposable graph G, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 328$.
Currently the best:

Theorem 25 (BL, Przybyło, Soták, 2018+)

For every decomposable graph G, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 220$.

Subcubic graphs

Theorem 26 (BL, Przybyło, Soták, 2018+)

For every decomposable graph G with $\Delta(G)=3$, it holds $\chi_{\text {irr }}^{\prime}(G) \leq 4$.

Bipartite graphs

Theorem 27 (Baudon et al., 2015)

Let G be a regular bipartite graph with minimum degree at least 3 . Then

$$
\chi_{\mathrm{irr}}^{\prime}(G) \leq 2
$$

A decomposable bipartite graph is balanced if all the vertices in one of the two partition parts have even degrees.

Lemma 28 (Bensmail et al., 2017)

Let F be a balanced forest. Then F admits a LIE-C with at most 2 colors. Moreover, for each vertex v in the partition with no vertex of odd degree, all edges incident to v have the same color.

Bipartite graphs

Theorem 29 (BL, Przybyło, Soták, 2018+)

Let G be a (multi)graph not isomorphic to an odd cycle. Then

$$
\chi_{\text {irr }}^{\prime}(\mathcal{S}(G)) \leq 2
$$

Here, $\mathcal{S}(G)$ denotes the full subdivision of G, i.e. each edge of G is subdivided once.

Bipartite graphs

Theorem 29 (BL, Przybyło, Soták, 2018+)

Let G be a (multi)graph not isomorphic to an odd cycle. Then

$$
\chi_{\mathrm{irr}}^{\prime}(\mathcal{S}(G)) \leq 2
$$

Here, $\mathcal{S}(G)$ denotes the full subdivision of G, i.e. each edge of G is subdivided once.

Question 30

Is every connected balanced graph, which is not a cycle of length $4 k+2$, locally irregularly 2-edge-colorable?

Bipartite graphs

Theorem 31 (BL, Przybyło, Soták, 2018+)

Let G be a balanced graph. Then

$$
\chi_{\mathrm{irr}}^{\prime}(G) \leq 4
$$

Theorem 32 (BL, Przybyło, Soták, 2018+)
Let G be a decomposable bipartite graph. Then

$$
\chi_{\mathrm{irr}}^{\prime}(G) \leq 7 .
$$

Moreover, if G has an even number of edges, then the upper bound is 6 .

Ďakujem!

$$
4 \square>4 \text { 㽞 } \downarrow \text { 引 }
$$

