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Sunway TaihulLight

m Ranked #1 in the TOP500 list in March 2018 as the fastest
supercomputer

m 93 petaflops = 93 - 10'5 flops (floating point operations per
second)

m 10,649,600 CPU cores
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m Why supercomputers?

m Top speed of processors is almost achieved
m Natural solution: more processors
]

Parallel processing: computations executed at the same time
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m 8 ice hockey teams;

m Each team plays each team;

m Every day one match per team;
m We have 7 days;

m Can we do it?
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Basics

m For a graph G = (V, E), a k-edge-coloring is a function
f . E—{12,...,k}

(we can think of the k values as colors...)
m Edge-coloring is proper if adjacent edges receive distinct colors

m The smallest integer k for which G admits a (proper)
k-edge-coloring is called the chromatic index of G, X/(G)

—>» X(Ki)=3
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Vizing's Theorem

m Main goal: determine chromatic index as accurate as possible
(for a selected class of graphs)!

m Lower bound is trivial: adjacent edges must receive distinct
colors, so
A(G) < X'(G)
m Upper bound?

Theorem 1 (Vizing, 1964)

For every (simple) graph G

A(G) <X (G) < A(G) + 1.
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Vizing's Theorem

One color more than the lower bound suffices!
m When is it needed?

Three ice-hockey teams;
Each team plays each team;

Every day one match per team;

How many days? 3!
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Bipartite and complete graphs

Theorem 2 (Konig, 1916)

For every bipartite graph G

¥(6) = A(G).

m For complete graphs Ko, we have 2k — 1 disjoint perfect
matchings; we assign the same color to all edges of a
matching, so:

X’(ng) = A(ng) =2k —1.
Complete graphs of odd order need additional color:

X,(K2k+1) = A(Koks1) +1 =2k + 1.
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Adding assumptions

m How do the bounds for chromatic index change if we add
additional assumptions to the coloring?
m We will focus on three types:
m Acyclic edge-coloring;
m Strong edge-coloring;
m Locally irregular edge-coloring.
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Acyclic edge-coloring

m An acyclic k-edge-coloring of a graph G is a proper
k-edge-coloring where the edges of every cycle are assigned at
least three distinct colors, i.e., there are no bichromatic cycles.

m The smallest k for which an acyclic k-edge coloring of G exists
is the acyclic chromatic index of G, x,(G).

m So, X;(K4) =5= A(K4) + 2
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The Conjecture

Conjecture 3 (Fiam¢éik, 1978; Alon, Sudakov, Zaks, 2001)

For every graph G it holds

A(G) < X5(G) < A(G) +2

m Only one additional color is enough?!

m If G is d-regular, then \,(G) > d + 1.
Otherwise, every pair of colors induces a 2-factor, since every
color is present at every vertex.

m Conjecture 3 is not confirmed even for complete graphs!
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Conjecture 4 (Kotzig, 1964)

For every n > 2, Ky, can be decomposed into 2n — 1 perfect
matchings such that the union of any two matchings forms a
hamiltonian cycle in Ks,,.

m Closely related to acyclic edge-colorings.

m If the Conjecture 4 is true, the removal of one vertex from Ks,
results in an acyclic edge coloring of Kb,_1 with
2n — 1= A(Kap—1) + 1 colors, which is optimal.
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Conjecture 4 (Kotzig, 1964)

For every n > 2, Ky, can be decomposed into 2n — 1 perfect
matchings such that the union of any two matchings forms a
hamiltonian cycle in Ks,,.

m Closely related to acyclic edge-colorings.

m If the Conjecture 4 is true, the removal of one vertex from Ks,
results in an acyclic edge coloring of Kb,_1 with
2n — 1= A(Kap—1) + 1 colors, which is optimal.

m If K41 has perfect 1-factorization, then Kj, , has it also.
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General graphs

m Several upper bounds for acyclic chromatic index have been
proven repeatedly, all using probabilistic approaches

Theorem 5 (Giotis et al., 2017)

For every graph G it holds

X2(G) < [3.74 (A(G) - 1)] +1

Theorem 6 (Alon, Sudakov, Zaks, 2001)

For every graph G with girth at least CA(G) log A(G), for a
constant C, it holds

XL5(G) < A(G) +2.
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Subcubic graphs

m The notion of acyclic colorings was first introduced in 1973 by
Griinbaum for the vertex version. In 1979, Burnstein proved
that 5 colors suffice for acyclic vertex coloring of every graph
G with A(G) < 4.

m The maximum degree of the line graph L(G) of a subcubic
graph G is at most 4...

Corollary 7 (Burnstein, 1979)

Let G be a subcubic graph. Then

X5(G) <5.
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Planar graphs

m Another candidate class of graphs to confirm Conjecture 4
m Confirmed for triangle-free planar graphs

m In general we are close...

Theorem 8 (Wang, Zhang, 2017+)

Let G be a planar graph. Then

X2(G) < A(G) +6.
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Planar graphs - A colors

m Cohen, Havet and Miiller conjectured that every planar graph
G with large enough maximum degree has x,(G) = A
(note the analogy to Vizing's conjecture)

Theorem 9 (Cranston, 2017+)
Let G be a planar graph with A(G) > 4.2 -10'* . Then

X5(G) = A(G).
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Planar graphs - A colors

m We considered the problem with the girth condition added.

Theorem 10 (Hadak et al., 2012)
Let G be a planar graph with girth g and maximum degree A.
Then x,(G) = A if one of the following conditions holds:

mA>3andg>12, or

mA>4andg>8, or

mA>b5andg>17, or

mA>6andg>6, or

mA>10and g >b5.
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Definition

m Distance between edges: distance between corresponding
vertices in the line graph (adjacent edges are at distance 1)

m A strong k-edge-coloring of a graph G is a proper
k-edge-coloring where the edges of every path of length 3 have
three distinct colors, i.e., not only incident edges but also the
edges at distance 2 have distinct colors.

m The smallest k for which G admits a strong k-edge-coloring is
the strong chromatic index of G, x5(G).

m Strong edge coloring of G is a vertex 2-distance coloring of its
line graph L(G)

X:(G) = x(L(6)?).
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m Strong edge-coloring was initiated by Fouquet and Jolivet in
1982.

m Erdés and Nesetfil in 1985 proposed a conjecture on the upper
bound.

Conjecture 11 (Erd6s, Nesetfil, 1985)

For every graph G it holds
2A(G)?, A(G) is even;

Xs(G) < { .
%(5A(G)2—2A(G)+1), A(G) is odd.



The Conjecture

m The bounds in Conjecture 11 are tight for every A:




The Conjecture

construction of graphs achieving the conjectured bound:

m For even A replace each vertex of a 5-cycle W|th vertices;

For odd A replace two consecutive vertices of a 5—cyc|e with
A+1 vertices and the others with % vertices.
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General graphs

m By greedy method, we have x4(G) <2A(G)(A(G)—1)+1

m As in the acyclic case, several upper bounds have been proven
repeatedly, all using probabilistic approaches

Theorem 12 (Bonamy, Perret, Postle, 2017+)

For every graph G with sufficiently large maximum degree it holds

x+(G) < 1.835A(G)?
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Theorem 13 (Andersen, 1992)
Let G be a graph with A(G) = 3. Then,
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Subcubic & Subquartic graphs

Theorem 13 (Andersen, 1992)
Let G be a graph with A(G) = 3. Then,

X/S(G) <10.

Theorem 14 (Cranston, 2006)
Let G be a graph with A(G) = 4. Then,

Xs(G) < 22.
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Conjecture 15 (Faudree et al., 1990)
Let G be a bipartite graph. Then,

X+(G) < A(G)?.

m And even stronger version:

Conjecture 16 (Brualdi, Quinn Massey, 1993)

If G is bipartite graph with maximum degree of partite sets A1 and
Ao, then
Xs(G) < A1 As.
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Bipartite graphs

Theorem 17 (Steger, Yu, 1993)
Let G be a subcubic bipartite graph. Then,

Y:(G) <9.

Theorem 18 (Nakprasit, 2008)

Let G be a bipartite graph with maximum degree of partite sets 2
and A, then
Xs(G) <2A.

m For (3, A)-graphs there is a weaker result: x.(G) < 4A
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Planar graphs

Theorem 19 (Faudree et al., 1990)
Let G be a planar graph. Then,

X:(G) < 4A(G) + 4.

Proof.
m Color G properly with x/(G) colors

m Let M; be the set of the edges of same color. Let G(M;) be a
graph induced by M; where every edge from M; is contracted

m Since G(M;) is planar, its vertices (the edges of M;) can be
colored with 4 colors by the Four Color Theorem, hence all the
edges with a common edge receive distinct color

m Altogether we need 4 \/(G) colors
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construction of planar graphs with x.(G) = 4A(G) — 4
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m Join two copies of K3 ,, along a fixed 4-cycle.
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Planar graphs

m Forbidding short cycles in planar graphs, gives us some more
freedom

Conjecture 20 (Hudék et al., 2014)

There exists a constant C such that for every planar graph G with
girth g > 5 it holds

oy [28O0]
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Basics

A graph G is locally irregular if every two adjacent vertices
have distinct degrees.

An edge-coloring is locally irregular if every color class induces
a locally irregular graph.

Always improper — paths of odd length do not admit such a
coloring

Introduced by Baudon, Bensmail, Przybyto, and Wozniak in
2013 (the paper published in 2015).

Motivated by the (1-2-3)-Conjecture:
For every graph with no Ky component there exists an edge

weighting with 1, 2, and 3 such that for every two adjacent
vertices the sums on their incident edges are distinct.



Example: Kj

m A test for the audience... How many colors?



Example: Kj

m Correct!
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Example: Kj

m And now — add one edge:
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Decomposable graphs

A graph is decomposable if it admits a locally irregular
edge-coloring (LIE-C).

m The minimum k for which there is a LIE-C of a graph G with
k colors is the locally irregular chromatic index of G, X/ (G).

Not all graphs are decomposable, e.g. odd-length paths,
odd-length cycles.

A complete characterization was given by Baudon, Bensmail,
Przybyto, and Wozniak.
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Define a family of graphs T recursively:
m The triangle C; belongs to 7.

m Every other graph of this family can be constructed by taking
an auxiliary graph F which might either be a path of even
length or a path of odd length with a triangle glued to one
end, then choosing a graph G € T containing a triangle with
at least one vertex v of degree 2 and finally identifying v with
a vertex of degree 1 in F.
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The Conjecture

Conjecture 21 (Baudon et al., 2015)
For every decomposable graph G, it holds x!..(G) < 3.

The conjecture, if true, is tight; consider e.g. GCs.

Theorem 22 (Baudon et al., 2015)
For every d-regular graph G, with d > 107, it holds ! .(G) < 3.

Theorem 23 (Przybyto, 2016)
For every graph G, with 5(G) > 100, it holds x!..(G) < 3.



The upper bound

Bensmail, Merker, and Thomassen established the first constant
upper bound using decompositions into bipartite graphs.

Theorem 24 (Bensmail et al., 2017)
For every decomposable graph G, it holds x!,.(G) < 328.
Currently the best:

Theorem 25 (BL, Przybyto, Sotak, 2018+)

For every decomposable graph G, it holds x}..(G) < 220.



Subcubic graphs

Theorem 26 (BL, Przybyto, Sotak, 2018+)

For every decomposable graph G with A(G) = 3, it holds
Xinr(G) < 4.



Bipartite graphs

Theorem 27 (Baudon et al., 2015)

Let G be a regular bipartite graph with minimum degree at least 3.
Then
Xire(G) < 2.

A decomposable bipartite graph is balanced if all the vertices in one
of the two partition parts have even degrees.

Lemma 28 (Bensmail et al., 2017)

Let F be a balanced forest. Then F admits a LIE-C with at most 2
colors. Moreover, for each vertex v in the partition with no vertex
of odd degree, all edges incident to v have the same color.



Bipartite graphs

Theorem 29 (BL, Przybyto, Sotak, 2018+)

Let G be a (multi)graph not isomorphic to an odd cycle. Then

Xire(S(G)) < 2.

Here, S(G) denotes the full subdivision of G, i.e. each edge of G is
subdivided once.
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Theorem 29 (BL, Przybyto, Sotak, 2018+)

Let G be a (multi)graph not isomorphic to an odd cycle. Then

Xire(S(G)) < 2.

Here, S(G) denotes the full subdivision of G, i.e. each edge of G is
subdivided once.

Question 30

Is every connected balanced graph, which is not a cycle of length
4k + 2, locally irregularly 2-edge-colorable?




Bipartite graphs

Theorem 31 (BL, Przybyto, Sotak, 2018+)
Let G be a balanced graph. Then

Xinr(G) < 4.

Theorem 32 (BL, Przybyto, Sotak, 2018+)

Let G be a decomposable bipartite graph. Then
Xire(G) < 7.

Moreover, if G has an even number of edges, then the upper bound
is 6.



Dakujem!
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