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Sunway TaihuLight

Ranked #1 in the TOP500 list in March 2018 as the fastest

supercomputer

93 peta�ops = 93 · 1015 �ops (�oating point operations per

second)

10,649,600 CPU cores
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Basics

For a graph G = (V ,E ), a k-edge-coloring is a function

f : E → {1, 2, . . . , k}

(we can think of the k values as colors...)

Edge-coloring is proper if adjacent edges receive distinct colors

The smallest integer k for which G admits a (proper)

k-edge-coloring is called the chromatic index of G , χ′(G )
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Main goal: determine chromatic index as accurate as possible

(for a selected class of graphs)!

Lower bound is trivial: adjacent edges must receive distinct
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∆(G ) ≤ χ′(G )

Upper bound?

Theorem 1 (Vizing, 1964)

For every (simple) graph G
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Bipartite and complete graphs

Theorem 2 (König, 1916)

For every bipartite graph G

χ′(G ) = ∆(G ).

For complete graphs K2k , we have 2k − 1 disjoint perfect

matchings; we assign the same color to all edges of a

matching, so:

χ′(K2k) = ∆(K2k) = 2k − 1.

Complete graphs of odd order need additional color:

χ′(K2k+1) = ∆(K2k+1) + 1 = 2k + 1.
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Acyclic edge-coloring;
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Locally irregular edge-coloring.
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So, χ′a(K4) = 5 = ∆(K4) + 2



Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every cycle are assigned at

least three distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).

So, χ′a(K4) = 5 = ∆(K4) + 2



Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every cycle are assigned at

least three distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).

So, χ′a(K4) = 5 = ∆(K4) + 2



Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every cycle are assigned at

least three distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).

So, χ′a(K4) = 5 = ∆(K4) + 2



Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every cycle are assigned at

least three distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).

So, χ′a(K4) = 5 = ∆(K4) + 2



Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every cycle are assigned at

least three distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).

So, χ′a(K4) = 5 = ∆(K4) + 2



Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every cycle are assigned at

least three distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).

So, χ′a(K4) = 5 = ∆(K4) + 2



Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every cycle are assigned at

least three distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).

So, χ′a(K4) = 5 = ∆(K4) + 2



Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every cycle are assigned at

least three distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).

So, χ′a(K4) = 5 = ∆(K4) + 2



Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every cycle are assigned at

least three distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).

So, χ′a(K4) = 5 = ∆(K4) + 2



The Conjecture

Conjecture 3 (Fiam£ík, 1978; Alon, Sudakov, Zaks, 2001)

For every graph G it holds

∆(G ) ≤ χ′a(G ) ≤ ∆(G ) + 2.

Only one additional color is enough?!

If G is d-regular, then χ′a(G ) ≥ d + 1.

Otherwise, every pair of colors induces a 2-factor, since every

color is present at every vertex.

Conjecture 3 is not con�rmed even for complete graphs!
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Perfect 1-factorization

Conjecture 4 (Kotzig, 1964)

For every n ≥ 2, K2n can be decomposed into 2n − 1 perfect

matchings such that the union of any two matchings forms a

hamiltonian cycle in K2n.

Closely related to acyclic edge-colorings.

If the Conjecture 4 is true, the removal of one vertex from K2n

results in an acyclic edge coloring of K2n−1 with

2n − 1 = ∆(K2n−1) + 1 colors, which is optimal.

If Kn+1 has perfect 1-factorization, then Kn,n has it also.
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General graphs

Several upper bounds for acyclic chromatic index have been

proven repeatedly, all using probabilistic approaches

Theorem 5 (Giotis et al., 2017)

For every graph G it holds

χ′a(G ) ≤ d3.74 (∆(G )− 1)e+ 1

Theorem 6 (Alon, Sudakov, Zaks, 2001)

For every graph G with girth at least C∆(G ) log ∆(G ), for a
constant C , it holds

χ′a(G ) ≤ ∆(G ) + 2 .
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Subcubic graphs

The notion of acyclic colorings was �rst introduced in 1973 by

Gr¶nbaum for the vertex version. In 1979, Burnstein proved

that 5 colors su�ce for acyclic vertex coloring of every graph

G with ∆(G ) ≤ 4.

The maximum degree of the line graph L(G ) of a subcubic

graph G is at most 4...

Corollary 7 (Burnstein, 1979)

Let G be a subcubic graph. Then

χ′a(G ) ≤ 5 .
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Con�rmed for triangle-free planar graphs

In general we are close...

Theorem 8 (Wang, Zhang, 2017+)

Let G be a planar graph. Then

χ′a(G ) ≤ ∆(G ) + 6 .
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Planar graphs - ∆ colors

Cohen, Havet and Müller conjectured that every planar graph

G with large enough maximum degree has χ′a(G ) = ∆
(note the analogy to Vizing's conjecture)

Theorem 9 (Cranston, 2017+)

Let G be a planar graph with ∆(G ) ≥ 4.2 · 1014 . Then

χ′a(G ) = ∆(G ) .
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We considered the problem with the girth condition added.

Theorem 10 (Húdak et al., 2012)

Let G be a planar graph with girth g and maximum degree ∆.

Then χ′a(G ) = ∆ if one of the following conditions holds:

∆ ≥ 3 and g ≥ 12, or

∆ ≥ 4 and g ≥ 8, or

∆ ≥ 5 and g ≥ 7, or

∆ ≥ 6 and g ≥ 6, or

∆ ≥ 10 and g ≥ 5.
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De�nition

Distance between edges: distance between corresponding

vertices in the line graph (adjacent edges are at distance 1)

A strong k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every path of length 3 have

three distinct colors, i.e., not only incident edges but also the

edges at distance 2 have distinct colors.

The smallest k for which G admits a strong k-edge-coloring is

the strong chromatic index of G , χ′s(G ).

Strong edge coloring of G is a vertex 2-distance coloring of its

line graph L(G )
χ′s(G ) = χ(L(G )2) .
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The Conjecture

Strong edge-coloring was initiated by Fouquet and Jolivet in

1982.

Erd®s and Ne²et°il in 1985 proposed a conjecture on the upper

bound.

Conjecture 11 (Erd®s, Ne²et°il, 1985)

For every graph G it holds

χ′s(G ) ≤

{ 5
4

∆(G )2 , ∆(G ) is even;

1
4

(5∆(G )2 − 2∆(G ) + 1) , ∆(G ) is odd.
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The Conjecture

The bounds in Conjecture 11 are tight for every ∆:

∆(G) = 4 ∆(G) = 5



The Conjecture

The construction of graphs achieving the conjectured bound:

For even ∆ replace each vertex of a 5-cycle with ∆
2
vertices;

For odd ∆ replace two consecutive vertices of a 5-cycle with
∆+1
2

vertices and the others with ∆−1
2

vertices.



General graphs

By greedy method, we have χ′s(G ) ≤ 2∆(G )(∆(G )− 1) + 1

As in the acyclic case, several upper bounds have been proven

repeatedly, all using probabilistic approaches

Theorem 12 (Bonamy, Perret, Postle, 2017+)

For every graph G with su�ciently large maximum degree it holds

χ′s(G ) ≤ 1.835∆(G )2
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Subcubic & Subquartic graphs

Theorem 13 (Andersen, 1992)

Let G be a graph with ∆(G ) = 3. Then,

χ′s(G ) ≤ 10 .

Theorem 14 (Cranston, 2006)

Let G be a graph with ∆(G ) = 4. Then,

χ′s(G ) ≤ 22 .
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Bipartite graphs

Conjecture 15 (Faudree et al., 1990)

Let G be a bipartite graph. Then,

χ′s(G ) ≤ ∆(G )2 .

And even stronger version:

Conjecture 16 (Brualdi, Quinn Massey, 1993)

If G is bipartite graph with maximum degree of partite sets ∆1 and

∆2, then

χ′s(G ) ≤ ∆1 ·∆2 .
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Bipartite graphs

Theorem 17 (Steger, Yu, 1993)

Let G be a subcubic bipartite graph. Then,

χ′s(G ) ≤ 9 .

Theorem 18 (Nakprasit, 2008)

Let G be a bipartite graph with maximum degree of partite sets 2

and ∆, then

χ′s(G ) ≤ 2∆ .

For (3,∆)-graphs there is a weaker result: χ′s(G ) ≤ 4∆
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Planar graphs

Theorem 19 (Faudree et al., 1990)

Let G be a planar graph. Then,

χ′s(G ) ≤ 4∆(G ) + 4 .

Proof.

Color G properly with χ′(G ) colors

Let Mi be the set of the edges of same color. Let G (Mi ) be a

graph induced by Mi where every edge from Mi is contracted

Since G (Mi ) is planar, its vertices (the edges of Mi ) can be

colored with 4 colors by the Four Color Theorem, hence all the

edges with a common edge receive distinct color

Altogether we need 4 χ′(G ) colors
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Planar graphs

The above bound is pretty tight: Faudree et al. presented a

construction of planar graphs with χ′s(G ) = 4∆(G )− 4

Join two copies of K2,m along a �xed 4-cycle.
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Planar graphs

Forbidding short cycles in planar graphs, gives us some more

freedom

Conjecture 20 (Hudák et al., 2014)

There exists a constant C such that for every planar graph G with

girth g ≥ 5 it holds

χ′s(G ) ≤

⌈
2g(∆(G )− 1)

g − 1

⌉
+ C
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Locally irregular edge-coloring



Basics

A graph G is locally irregular if every two adjacent vertices

have distinct degrees.

An edge-coloring is locally irregular if every color class induces

a locally irregular graph.

Always improper � paths of odd length do not admit such a

coloring

Introduced by Baudon, Bensmail, Przybyªo, and Wo¹niak in

2013 (the paper published in 2015).

Motivated by the (1-2-3)-Conjecture:

For every graph with no K2 component there exists an edge

weighting with 1, 2, and 3 such that for every two adjacent

vertices the sums on their incident edges are distinct.
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Example: K5

A test for the audience... How many colors?

And now � add one edge:
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Decomposable graphs

A graph is decomposable if it admits a locally irregular

edge-coloring (LIE-C).

The minimum k for which there is a LIE-C of a graph G with

k colors is the locally irregular chromatic index of G , χ′
irr

(G ).

Not all graphs are decomposable, e.g. odd-length paths,

odd-length cycles.

A complete characterization was given by Baudon, Bensmail,

Przybyªo, and Wo¹niak.
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Decomposable graphs

De�ne a family of graphs T recursively:

The triangle C3 belongs to T .
Every other graph of this family can be constructed by taking

an auxiliary graph F which might either be a path of even

length or a path of odd length with a triangle glued to one

end, then choosing a graph G ∈ T containing a triangle with

at least one vertex v of degree 2 and �nally identifying v with

a vertex of degree 1 in F .
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The Conjecture

Conjecture 21 (Baudon et al., 2015)

For every decomposable graph G , it holds χ′
irr

(G ) ≤ 3.

The conjecture, if true, is tight; consider e.g. C6.

Theorem 22 (Baudon et al., 2015)

For every d-regular graph G , with d ≥ 107, it holds χ′
irr

(G ) ≤ 3.

Theorem 23 (Przybyªo, 2016)

For every graph G , with δ(G ) ≥ 1010, it holds χ′
irr

(G ) ≤ 3.
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The upper bound

Bensmail, Merker, and Thomassen established the �rst constant

upper bound using decompositions into bipartite graphs.

Theorem 24 (Bensmail et al., 2017)

For every decomposable graph G , it holds χ′
irr

(G ) ≤ 328.

Currently the best:

Theorem 25 (BL, Przybyªo, Soták, 2018+)

For every decomposable graph G , it holds χ′
irr

(G ) ≤ 220.



Subcubic graphs

Theorem 26 (BL, Przybyªo, Soták, 2018+)

For every decomposable graph G with ∆(G ) = 3, it holds

χ′
irr

(G ) ≤ 4.



Bipartite graphs

Theorem 27 (Baudon et al., 2015)

Let G be a regular bipartite graph with minimum degree at least 3.

Then

χ′irr(G ) ≤ 2 .

A decomposable bipartite graph is balanced if all the vertices in one

of the two partition parts have even degrees.

Lemma 28 (Bensmail et al., 2017)

Let F be a balanced forest. Then F admits a LIE-C with at most 2

colors. Moreover, for each vertex v in the partition with no vertex

of odd degree, all edges incident to v have the same color.



Bipartite graphs

Theorem 29 (BL, Przybyªo, Soták, 2018+)

Let G be a (multi)graph not isomorphic to an odd cycle. Then

χ′irr(S(G )) ≤ 2 .

Here, S(G ) denotes the full subdivision of G , i.e. each edge of G is

subdivided once.

Question 30

Is every connected balanced graph, which is not a cycle of length

4k + 2, locally irregularly 2-edge-colorable?
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Bipartite graphs

Theorem 31 (BL, Przybyªo, Soták, 2018+)

Let G be a balanced graph. Then

χ′irr(G ) ≤ 4 .

Theorem 32 (BL, Przybyªo, Soták, 2018+)

Let G be a decomposable bipartite graph. Then

χ′irr(G ) ≤ 7 .

Moreover, if G has an even number of edges, then the upper bound

is 6.
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