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Odd edge-coloring



Definition

A graph is odd if every vertex has degree odd or zero;

An odd edge-coloring of a graph is an edge-decomposition
into odd subgraphs, i.e., coloring of edges such that every
color class induces an odd subgraph;

χ′
o(G ) - the odd chromatic index;
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Simple graphs

Theorem 1 (Pyber [9])

For every simple graph G , it holds χ′
o(G ) ≤ 4.

The bound is tight for an infinite number of graphs.

Pyber’s motivation: covering graphs by even subgraphs [9]

What about multigraphs?

Motivation: facial-parity edge-coloring [6] (click here for more
details)

http://luzar.fis.unm.si/materials/csgt13-parity.pdf
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Multigraphs

There are graphs with χ′
o > 4:

Shannon’s triangle is a loopless graph on three pairwise
adjacent vertices;

Let p, q, r be the parities of the multiplicities (2 for even, 1
for odd) of the edges: we then say that Shannon’s triangle is
of type (p, q, r);
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Multigraphs

Theorem 2 (BL, Petruševski, Škrekovski [3])

For every (multi)graph G without loops, it holds χ′
o(G ) ≤ 6.

Moreover, the equality is achieved only by Shannon’s triangles of
type (2, 2, 2).

Theorem 3 (Petruševski [7])

For every (multi)graph G without loops that is not Shannon’s
triangle of type (2, 2, 2) or (2, 2, 1), it holds χ′

o(G ) ≤ 4. Moreover,
one of the colors is used at most twice.

Hence, in general we know a lot...
What about prescribing parities to the vertices instead of
taking odd subgraphs?
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Vertex-parity edge-coloring



Definition

π : V (G )→ {0, 1} is a vertex signature for G , and a pair
(G , π) is a parity pair.

A vertex-parity edge-coloring of a parity pair (G , π) is a (not
necessarily proper) edge-coloring such that at every vertex v
each appearing color c is in parity accordance with π, i.e. the
number of edges of color c incident to v is even if π(v) = 0,
and odd if π(v) = 1.

χ′
p(G , π) - the vertex-parity chromatic index

Necessary conditions for the existence of χ′
p(G , π):

(P1) Every vertex v of (G , π) with π(v) = 0 has even degree in G .
(P2) In every component of G , there are zero or at least two

vertices with the vertex signature value 1.

A parity pair satisfying (P1) and (P2) is a proper parity pair.
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Results

Given a graph G0 and a pair (G , π), we say (G , π) is a
derivative of G0, denoted by (G , π) � G0, whenever

π−1(1) = V (G0), and
G is obtainable from G0 through a finite (possibly empty)
succession of the following two operations:

(D1) subdivide an arbitrary edge (thus creating a new 2-vertex);
(D2) identify any number of newly created 2-vertices.

χ′
p(G , π) ≤ χ′

o(G0)

Theorem 4 (BL, Petruševski, Škrekovski [4])

For every connected proper parity pair (G , π) it holds
χ′
p(G , π) ≤ 6. Furthermore, there exists a (not necessarily

connected) graph G0 such that (G , π) � G0 and
χ′
p(G , π) = χ′

o(G0).
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Derivative example
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The pair (G , π) is a derivative of both graphs G ′
0 and G ′′

0 .
However, it holds that χ′

p(G , π) = 4, whereas χ′
o(G ′

0) = 4 and
χ′
o(G ′′

0 ) = 6.



Characterization

Corollary 5 (BL, Petruševski, Škrekovski [4])

For every connected proper pair (G , π) that is not a derivative of
Shannon’s triangle of type (2, 2, 2) or (2, 2, 1), it holds that
χ′
p(G , π) ≤ 4.

Hence, if π assigns 1 to at least four vertices of G , the
vertex-parity chromatic index is at most 4.

For more details on characterization of graphs with
χ′
p ∈ {5, 6} see the paper.

For details on the weak version of this coloring see the paper.

Is this generalization useful?
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Locally irregular edge-coloring



Definition

A graph G is locally irregular if every two adjacent vertices
have distinct degrees.

An edge-coloring is locally irregular if every color class induces
a locally irregular graph.

Always improper—paths of odd length do not admit such a
coloring

Introduced by Baudon, Bensmail, Przyby lo, and Woźniak in
2013 [1].

Motivated by the (1-2-3)-conjecture:

For every graph with no K2 component there exists an edge
weighting with 1, 2, and 3 such that for every two adjacent
vertices the sums on their incident edges are distinct.
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Decomposable graphs

A graph is decomposable if it admits a locally irregular
edge-coloring (LIE-C).

The minimum k for which there is a LIE-C of a graph G with
k colors is the locally irregular chromatic index of G , χ′

irr(G ).

Not all graphs are decomposable, e.g. odd-length paths,
odd-length cycles.

A complete characterization was given by Baudon, Bensmail,
Przyby lo, and Woźniak [1].
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The Conjecture

Conjecture 6 (Baudon et al., 2015)

For every decomposable graph G , it holds χ′
irr(G ) ≤ 3.

The conjecture, if true, is tight; consider e.g. C6;

It holds for graphs with large minimum degree [8] and regular
graphs of large degree [1];

In general, only constant upper bunds are known;
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Results

Theorem 7 (BL, Przyby lo, Soták [5])

For every decomposable graph G with maximum degree 3, it holds
χ′
irr(G ) ≤ 4.

Theorem 8 (BL, Przyby lo, Soták [5])

For every decomposable graph G , it holds χ′
irr(G ) ≤ 220.



Vertex-parity edge-coloring application

A decomposable bipartite graph is balanced if all the vertices
in one of the two partition parts have even degrees;

A trivial corollary of Theorem 4:

Theorem 9 (BL, Przyby lo, Soták, 2016+)

Let G be a balanced graph. Then

χ′
irr(G ) ≤ 4 .

This observation decreases the previous upper bound of 328,
due to Bensmail, Merker and Thomassen [2] to our 220 colors.
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