On injective colorings of graphs (a survey)

Borut Lužar

Faculty of Information Science, Novo mesto & Institute of Mathematics, Physics and Mechanics, Ljubljana,

Slovenia

September 8, 2014

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Injective colorings

- Introduced by Hahn, Kratochvíl, Širáň, and Sotteau in 2002
- Coloring of vertices such that every two vertices with a common neighbor receive distinct colors
- $\chi_i(G)$ the injective chromatic number of a graph G
- Not necessarily proper
- Why injective? Its restriction to the (open) neighborhood of every vertex is injective
- Motivation from complexity and coding theory injective coloring of hypercubes
- Related to distance colorings (L(p,q)-labelings)

Common neighbor graph

- Common neighbor graph $G^{(2)}$ of a graph G is a graph with the vertex set V(G) and has an edge between two vertices if they have a common neighbor in G.
- $\chi_i(G) = \chi(G^{(2)})$
- Also common neighborhood graph or open neighborhood graph

Basic observations

Proposition 1 (Hahn et al.)

Let G be connected and distinct from K_2 . Then $\chi_i(G) \ge \chi(G)$.

Proposition 2 (Hahn et al.)

Let G be a diameter 2 graph with independence number α . Then $\chi_i(G) \geq \alpha$.

Proposition 3 (Hahn et al.)

Let G be an arbitrary graph of order at least four. Then $\chi_i(G) = |V(G)|$ if and only if either G is a complete graph, or G has diameter 2 and every edge of G is contained in a triangle.

Proposition 4 (Hahn et al.)

Let G have maximum degree Δ . Then $\chi_i(G) \leq \Delta(\Delta - 1) + 1$.

Hypercubes

Theorem 5 (Hahn et al.; Tarsi et al.)

Let Q_n be the n-dimensional cube. Then $\chi_i(Q_n) = n$ if and only if $n = 2^r$ for some $r \ge 0$.

Corollary 6 (Hahn et al.)

For any
$$n$$
, $\chi_i(Q_n) \leq 2^{\lceil \log n \rceil}$; thus, $\chi_i(Q_n) \leq 2n-2$.

Theorem 7 (Hahn et al.)

$$\chi_i(Q_{2^m-j}) = 2^m \text{ for } 0 \le j \le 3.$$

Open for other values of j

- * @ * * 图 * * 图

Complexity

Theorem 8 (Hahn et al.)

Determining if there is an injective k-coloring of a graph G is NP-complete.

Jin, Xu and Zhang: determining whether there is an injective k-coloring of a balanced bipartite graph is NP-complete.

- 4 目 ト - 4 三 ト - 4

Nordhaus-Gaddum-type relations

Theorem 9 (Huang, Lih)

For any graph G of order $n \geq 5$, the following statements hold.

• If
$$n = 5$$
 or even, then $n \le \chi_i(G) + \chi_i(\overline{G}) \le 2n$;

2 If $n \ge 7$ is odd, then $n + 1 \le \chi_i(G) + \chi_i(\overline{G}) \le 2n$.

Theorem 10 (Huang, Lih)

For any graph G of order $n \ge 5$, $n \le \chi_i(G)\chi_i(\overline{G}) \le n^2$.

Smaller classes of graphs

Theorem 11 (Chen et al.)

Let G be a K_4 -minor free graph with $\Delta \geq 1$. Then,

$$\chi_i(G) \le \left\lceil \frac{3}{2} \Delta \right\rceil$$

Planar graphs

Theorem 12 (Chen et al.)

If G is a planar graph with $\Delta \geq 3$, then $\chi_i(G) \leq \Delta^2 - \Delta$.

Conjecture 13 (Chen et al.)

For each planar graph G, $\chi_i(G) \leq \left\lceil \frac{3}{2} \Delta \right\rceil$.

Upper bounds

Theorem 14 (L., Škrekovski)

There exist planar graphs G of maximum degree $\Delta \geq 3$ satisfying the following:

(a) $\chi_i(G) = 5$, if $\Delta = 3$; (b) $\chi_i(G) = \Delta + 5$, if $4 \le \Delta \le 7$; (c) $\chi_i(G) = \lfloor \frac{3}{2}\Delta \rfloor + 1$, if $\Delta \ge 8$.

Upper bounds

Conjecture 15 (L., Škrekovski)

Let G be a planar graph with maximum degree Δ . Then (a) $\chi_i(G) \leq 5$, if $\Delta = 3$; (b) $\chi_i(G) \leq \Delta + 5$, if $4 \leq \Delta \leq 7$;

(c) $\chi_i(G) \leq \lfloor \frac{3}{2}\Delta \rfloor + 1$, if $\Delta \geq 8$.

・ 同・ ・ ヨ・ ・

Subcubic planar graphs

- Subcubic planar graphs need at most 6 colors
- Conjecture says 5
- Computer check up to 20 vertices the conjecture is true

Upper bound & girth condition

- Many papers on the topic
- List version introduced
- Planar graphs of girth 6, arbitrary $\Delta(G)$ and $\chi_i(G) = \Delta(G) + 1$.

Upper bound & girth condition

		g(G)								
		5	6	7	8	9	10 - 11	12	13-18	19+
	3	$\Delta + 3$	$\Delta + 3$	$\Delta + 2$	$\Delta + 2$	$\Delta + 2$	$\Delta + 1$	$\Delta + 1$	$\Delta + 1$	Δ
	4	$\Delta + 6$	$\Delta + 3$	$\Delta + 2$	$\Delta + 2$	$\Delta + 1$	$\Delta + 1$	$\Delta + 1$	Δ	Δ
	5	$\Delta + 6$	$\Delta + 3$	$\Delta + 2$	$\Delta + 1$	$\Delta + 1$	$\Delta + 1$	Δ	Δ	Δ
	6-7	$\Delta + 6$	$\Delta + 3$	$\Delta + 2$	$\Delta + 1$	$\Delta + 1$	Δ	Δ	Δ	Δ
$\Delta(G)$	8-9	$\Delta + 6$	$\Delta + 2$	$\Delta + 2$	$\Delta + 1$	$\Delta + 1$	Δ	Δ	Δ	Δ
	10 - 12	$\Delta + 6$	$\Delta + 2$	$\Delta + 2$			Δ		Δ	Δ
	13 - 15	$\Delta + 4$	$\Delta + 2$	$\Delta + 2$		Δ	Δ		Δ	Δ
	16	$\Delta + 4$	$\Delta + 2$	Δ	Δ		Δ		Δ	Δ
	17 - 34	$\Delta + 4$	$\Delta + 1$	Δ		Δ	Δ		Δ	Δ
	35+	$\Delta + 3$	$\Delta + 1$	Δ	Δ	Δ	Δ	Δ	Δ	Δ

Problem 16

Does there exist an integer M such that every planar graph Gwith maximum degree $\Delta(G) \ge M$ and girth at least 5 is injectively $(\Delta + 1)$ -colorable?

Questions

Thank you!

《曰》 《聞》 《臣》 《臣》

æ