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Injective colorings

Introduced by Hahn, Kratochv́ıl, Širáň, and Sotteau in 2002

Coloring of vertices such that every two vertices with a
common neighbor receive distinct colors

χi(G) – the injective chromatic number of a graph G

Not necessarily proper

Why injective? Its restriction to the (open) neighborhood
of every vertex is injective

Motivation from complexity and coding theory - injective
coloring of hypercubes

Related to distance colorings (L(p, q)-labelings)
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Common neighbor graph

Common neighbor graph G(2) of a graph G is a graph with
the vertex set V (G) and has an edge between two vertices
if they have a common neighbor in G.

χi(G) = χ(G(2))

Also common neighborhood graph or open neighborhood
graph
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Basic observations

Proposition 1 (Hahn et al.)

Let G be connected and distinct from K2. Then χi(G) ≥ χ(G).

Proposition 2 (Hahn et al.)

Let G be a diameter 2 graph with independence number α. Then
χi(G) ≥ α.

Proposition 3 (Hahn et al.)

Let G be an arbitrary graph of order at least four. Then
χi(G) = |V (G)| if and only if either G is a complete graph, or G
has diameter 2 and every edge of G is contained in a triangle.

Proposition 4 (Hahn et al.)

Let G have maximum degree ∆. Then χi(G) ≤ ∆(∆− 1) + 1.
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Hypercubes

Theorem 5 (Hahn et al.; Tarsi et al.)

Let Qn be the n-dimensional cube. Then χi(Qn) = n if and only
if n = 2r for some r ≥ 0.

Corollary 6 (Hahn et al.)

For any n, χi(Qn) ≤ 2dlogne; thus, χi(Qn) ≤ 2n− 2.

Theorem 7 (Hahn et al.)

χi(Q2m−j) = 2m for 0 ≤ j ≤ 3.

Open for other values of j

Injective colorings



Complexity

Theorem 8 (Hahn et al.)

Determining if there is an injective k-coloring of a graph G is
NP-complete.

Jin, Xu and Zhang: determining whether there is an injective
k-coloring of a balanced bipartite graph is NP-complete.
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Nordhaus-Gaddum-type relations

Theorem 9 (Huang, Lih)

For any graph G of order n ≥ 5, the following statements hold.

1 If n = 5 or even, then n ≤ χi(G) + χi(G) ≤ 2n;

2 If n ≥ 7 is odd, then n+ 1 ≤ χi(G) + χi(G) ≤ 2n.

Theorem 10 (Huang, Lih)

For any graph G of order n ≥ 5, n ≤ χi(G)χi(G) ≤ n2.

Injective colorings



Smaller classes of graphs

Theorem 11 (Chen et al.)

Let G be a K4-minor free graph with ∆ ≥ 1. Then,

χi(G) ≤

⌈
3

2
∆

⌉
.
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Planar graphs

Theorem 12 (Chen et al.)

If G is a planar graph with ∆ ≥ 3, then χi(G) ≤ ∆2 −∆.

Conjecture 13 (Chen et al.)

For each planar graph G, χi(G) ≤
⌈
3
2∆e.
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Upper bounds

Theorem 14 (L., Škrekovski)

There exist planar graphs G of maximum degree ∆ ≥ 3
satisfying the following:

(a) χi(G) = 5, if ∆ = 3;

(b) χi(G) = ∆ + 5, if 4 ≤ ∆ ≤ 7;

(c) χi(G) =
⌊
3
2∆
⌋

+ 1, if ∆ ≥ 8.

Figure: A planar graph with maximum degree 8 and χi(G) = 13.
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Upper bounds

Conjecture 15 (L., Škrekovski)

Let G be a planar graph with maximum degree ∆. Then

(a) χi(G) ≤ 5, if ∆ = 3;

(b) χi(G) ≤ ∆ + 5, if 4 ≤ ∆ ≤ 7;

(c) χi(G) ≤
⌊
3
2∆
⌋

+ 1, if ∆ ≥ 8.
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Subcubic planar graphs

Subcubic planar graphs need at most 6 colors

Conjecture says 5

Computer check - up to 20 vertices the conjecture is true
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Upper bound & girth condition

Many papers on the topic

List version introduced

Planar graphs of girth 6, arbitrary ∆(G) and
χi(G) = ∆(G) + 1.

v u

d(u) = d(v) = ∆(G)
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Upper bound & girth condition

g(G)

5 6 7 8 9 10–11 12 13–18 19+

3 ∆ + 3 ∆ + 3 ∆ + 2 ∆ + 2 ∆ + 2 ∆ + 1 ∆ + 1 ∆ + 1 ∆
4 ∆ + 6 ∆ + 3 ∆ + 2 ∆ + 2 ∆ + 1 ∆ + 1 ∆ + 1 ∆ ∆
5 ∆ + 6 ∆ + 3 ∆ + 2 ∆ + 1 ∆ + 1 ∆ + 1 ∆ ∆ ∆

6–7 ∆ + 6 ∆ + 3 ∆ + 2 ∆ + 1 ∆ + 1 ∆ ∆ ∆ ∆
∆(G) 8–9 ∆ + 6 ∆ + 2 ∆ + 2 ∆ + 1 ∆ + 1 ∆ ∆ ∆ ∆

10–12 ∆ + 6 ∆ + 2 ∆ + 2 ∆ ∆ ∆ ∆ ∆ ∆
13–15 ∆ + 4 ∆ + 2 ∆ + 2 ∆ ∆ ∆ ∆ ∆ ∆

16 ∆ + 4 ∆ + 2 ∆ ∆ ∆ ∆ ∆ ∆ ∆
17–34 ∆ + 4 ∆ + 1 ∆ ∆ ∆ ∆ ∆ ∆ ∆

35+ ∆ + 3 ∆ + 1 ∆ ∆ ∆ ∆ ∆ ∆ ∆

Problem 16

Does there exist an integer M such that every planar graph G
with maximum degree ∆(G) ≥M and girth at least 5 is
injectively (∆ + 1)-colorable?
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Questions

Thank you!
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