On injective colorings of graphs (a survey)

Borut Lužar

Faculty of Information Science, Novo mesto
\&
Institute of Mathematics, Physics and Mechanics, Ljubljana,
Slovenia

September 8, 2014

Injective colorings

- Introduced by Hahn, Kratochvíl, Širáñ, and Sotteau in 2002
- Coloring of vertices such that every two vertices with a common neighbor receive distinct colors
- $\chi_{i}(G)$ - the injective chromatic number of a graph G
- Not necessarily proper
- Why injective? Its restriction to the (open) neighborhood of every vertex is injective
- Motivation from complexity and coding theory - injective coloring of hypercubes
- Related to distance colorings ($L(p, q)$-labelings)

Common neighbor graph

- Common neighbor graph $G^{(2)}$ of a graph G is a graph with the vertex set $V(G)$ and has an edge between two vertices if they have a common neighbor in G.
- $\chi_{i}(G)=\chi\left(G^{(2)}\right)$
- Also common neighborhood graph or open neighborhood graph

Basic observations

Proposition 1 (Hahn et al.)

Let G be connected and distinct from K_{2}. Then $\chi_{i}(G) \geq \chi(G)$.

Proposition 2 (Hahn et al.)

Let G be a diameter 2 graph with independence number α. Then $\chi_{i}(G) \geq \alpha$.

Proposition 3 (Hahn et al.)

Let G be an arbitrary graph of order at least four. Then $\chi_{i}(G)=|V(G)|$ if and only if either G is a complete graph, or G has diameter 2 and every edge of G is contained in a triangle.

Proposition 4 (Hahn et al.)

Let G have maximum degree Δ. Then $\chi_{i}(G) \leq \Delta(\Delta-1)+1$.

Hypercubes

Theorem 5 (Hahn et al.; Tarsi et al.)

Let Q_{n} be the n-dimensional cube. Then $\chi_{i}\left(Q_{n}\right)=n$ if and only if $n=2^{r}$ for some $r \geq 0$.

Corollary 6 (Hahn et al.)
For any $n, \chi_{i}\left(Q_{n}\right) \leq 2^{\lceil\log n\rceil}$; thus, $\chi_{i}\left(Q_{n}\right) \leq 2 n-2$.

Theorem 7 (Hahn et al.)

$\chi_{i}\left(Q_{2^{m}-j}\right)=2^{m}$ for $0 \leq j \leq 3$.
Open for other values of j

Complexity

Theorem 8 (Hahn et al.)

Determining if there is an injective k-coloring of a graph G is NP-complete.

Jin, Xu and Zhang: determining whether there is an injective k-coloring of a balanced bipartite graph is NP-complete.

Theorem 9 (Huang, Lih)

For any graph G of order $n \geq 5$, the following statements hold.
(1) If $n=5$ or even, then $n \leq \chi_{i}(G)+\chi_{i}(\bar{G}) \leq 2 n$;
(2) If $n \geq 7$ is odd, then $n+1 \leq \chi_{i}(G)+\chi_{i}(\bar{G}) \leq 2 n$.

Theorem 10 (Huang, Lih)

For any graph G of order $n \geq 5, n \leq \chi_{i}(G) \chi_{i}(\bar{G}) \leq n^{2}$.

Smaller classes of graphs

Theorem 11 (Chen et al.)

Let G be a K_{4}-minor free graph with $\Delta \geq 1$. Then,

$$
\chi_{i}(G) \leq\left\lceil\frac{3}{2} \Delta\right\rceil
$$

Planar graphs

Theorem 12 (Chen et al.)

If G is a planar graph with $\Delta \geq 3$, then $\chi_{i}(G) \leq \Delta^{2}-\Delta$.

Conjecture 13 (Chen et al.)

For each planar graph G, $\chi_{i}(G) \leq\left\lceil\frac{3}{2} \Delta\right\rceil$.

Upper bounds

Theorem 14 (L., Škrekovski)

There exist planar graphs G of maximum degree $\Delta \geq 3$ satisfying the following:
(a) $\chi_{i}(G)=5$, if $\Delta=3$;
(b) $\chi_{i}(G)=\Delta+5$, if $4 \leq \Delta \leq 7$;
(c) $\chi_{i}(G)=\left\lfloor\frac{3}{2} \Delta\right\rfloor+1$, if $\Delta \geq 8$.

Upper bounds

Conjecture 15 (L., Škrekovski)
Let G be a planar graph with maximum degree Δ. Then (a) $\chi_{i}(G) \leq 5$, if $\Delta=3$;
(b) $\chi_{i}(G) \leq \Delta+5$, if $4 \leq \Delta \leq 7$;
(c) $\chi_{i}(G) \leq\left\lfloor\frac{3}{2} \Delta\right\rfloor+1$, if $\Delta \geq 8$.

Subcubic planar graphs

- Subcubic planar graphs need at most 6 colors
- Conjecture says 5
- Computer check - up to 20 vertices the conjecture is true

Upper bound \& girth condition

- Many papers on the topic
- List version introduced
- Planar graphs of girth 6, arbitrary $\Delta(G)$ and $\chi_{i}(G)=\Delta(G)+1$.

Upper bound \& girth condition

		$g(G)$								
		5	6	7	8	9	10-11	12	13-18	19^{+}
$\Delta(G)$	3	$\Delta+3$	$\Delta+3$	$\Delta+2$	$\Delta+2$	$\Delta+2$	$\Delta+1$	$\Delta+1$	$\Delta+1$	Δ
	4	$\Delta+6$	$\Delta+3$	$\Delta+2$	$\Delta+2$	$\Delta+1$	$\Delta+1$	$\Delta+1$	Δ	Δ
	5	$\Delta+6$	$\Delta+3$	$\Delta+2$	$\Delta+1$	$\Delta+1$	$\Delta+1$	Δ	Δ	Δ
	6-7	$\Delta+6$	$\Delta+3$	$\Delta+2$	$\Delta+1$	$\Delta+1$	Δ	Δ	Δ	Δ
	8-9	$\Delta+6$	$\Delta+2$	$\Delta+2$	$\Delta+1$	$\Delta+1$	Δ	Δ	Δ	Δ
	10-12	$\Delta+6$	$\Delta+2$	$\Delta+2$	Δ	Δ	Δ	Δ	Δ	Δ
	13-15	$\Delta+4$	$\Delta+2$	$\Delta+2$	Δ	Δ	Δ	Δ	Δ	Δ
	16	$\Delta+4$	$\Delta+2$	Δ						
	17-34	$\Delta+4$	$\Delta+1$	Δ						
	35^{+}	$\Delta+3$	$\Delta+1$	Δ						

Problem 16

Does there exist an integer M such that every planar graph G with maximum degree $\Delta(G) \geq M$ and girth at least 5 is injectively $(\Delta+1)$-colorable?

Questions

Thank you!

