On facial parity edge colorings

Borut Lužar
joint work with Riste Škrekovski

Faculty of Information Science, Novo mesto
\&
Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

$$
\text { July 9, } 2013
$$

Facial edge colorings

edge colorings \rightarrow facial edge colorings (restrictions given by the faces of an embedding to which an edge belongs)

- proper (4 colors),
- non-repetitive (8 colors),
- distance or k-facial $(3 k+1$?).

Motivation

Definition 1 (Bunde et al., 2007)

A parity edge coloring of a graph is a coloring of edges, where on every (nontrivial) path at least one color appears odd times.

- parity chromatic index, $p(G)$ - the minimum number of colors needed for a parity edge coloring
- proper edge coloring $\Rightarrow \Delta(G) \leq \chi^{\prime}(G) \leq p(G)$
- $p(G) \geq\left\lceil\log _{2}|V(G)|\right\rceil$ with equality for paths and even cycles

Definition

Definition 2 (Czap et al., 2011)

A facial parity edge coloring of a connected bridgeless plane graph is a facially proper edge coloring in which for each face f and each color c, either no edge or an odd number of edges incident to f is coloured with c.

The minimum number of colors needed for a facial parity edge coloring of a graph G is facial parity chromatic index, $\chi_{f p}(G)$.

Lower bound

In 2012, Czap presented a graph with $\chi_{f p}(G)=10$.

In 2012, Czap presented a graph with $\chi_{f p}(G)=10$.

Lower bound

In 2012, Czap presented a graph with $\chi_{f p}(G)=10$.

Lower bound

In 2012, Czap presented a graph with $\chi_{f p}(G)=10$.

Lower bound

In 2012, Czap presented a graph with $\chi_{f p}(G)=10$.

Upper bounds Discharging

Theorem 3 (Czap et al., 2011)

For every bridgeless plane graph G it holds that

$$
\chi_{f p}(G) \leq 92
$$

Proved using the discharging method.

Upper bounds

 Odd subgraphsSecond approach:

- color the edges facially proper;
- divide each color class into subclasses to fulfill the parity condition.

Facially proper edge coloring needs 4 colors (vertex coloring of the medial graph)

Odd subgraphs

Definition 4

An odd subgraph of a graph is a subgraph where all the vertices have odd or zero degree.

Theorem 5 (Pyber, 1991)

The edges of every simple graph can be covered by 4 edge disjoint odd subgraphs.

Odd subgraphs

Definition 4

An odd subgraph of a graph is a subgraph where all the vertices have odd or zero degree.

Theorem 5 (Pyber, 1991)

The edges of every simple graph can be covered by 4 edge disjoint odd subgraphs.

Odd subgraphs

Definition 4

An odd subgraph of a graph is a subgraph where all the vertices have odd or zero degree.

Theorem 5 (Pyber, 1991)

The edges of every simple graph can be covered by 4 edge disjoint odd subgraphs.

Odd subgraphs

Theorem 6

The edges of every multigraph graph G without loops can be covered by 6 edge disjoint odd subgraphs.

Odd subgraphs

Theorem 6

The edges of every multigraph graph G without loops can be covered by 6 edge disjoint odd subgraphs.

The only graph that needs 6 odd subgraphs:

Upper bounds

 Odd subgraphsSecond approach:

- color the edges facially proper;
- for each color c create dual D_{c} restricted to c
- partition D_{c} into odd subgraphs

Upper bounds Odd subgraphs

Second approach:

- color the edges facially proper;
- for each color c create dual D_{c} restricted to c
- partition D_{c} into odd subgraphs

Upper bounds

Odd subgraphs

Second approach:

- color the edges facially proper;
- for each color c create dual D_{c} restricted to c
- partition D_{c} into odd subgraphs

Upper bounds

 Odd subgraphsSecond approach:

- color the edges facially proper;
- for each color c create dual D_{c} restricted to c
- partition D_{c} into odd subgraphs

Upper bounds

 Odd subgraphsSecond approach:

- color the edges facially proper;
- for each color c create dual D_{c} restricted to c
- partition D_{c} into odd subgraphs

Upper bounds

 Odd subgraphsSecond approach:

- color the edges facially proper;
- for each color c create dual D_{c} restricted to c
- partition D_{c} into odd subgraphs

Upper bounds

 Odd subgraphsSecond approach:

- color the edges facially proper $\rightarrow 4$ colors
- for each color c create dual D_{c} restricted to c
- partition D_{c} into odd subgraphs $\rightarrow \leq 6$ colors

Theorem 7

For every bridgeless plane graph G it holds that

$$
\chi_{f p}(G) \leq 24
$$

Upper bounds

 Odd subgraphs
Lemma 8 (Czap et al., 2012)

Every connected plane graph admits a proper facial coloring of edges with at most 5 colors such that for every color the number of common edges between any pair of faces colored by c is odd or 0 .

Avoiding multigraphs to use Theorem 5 (since pairs of parallel edges are reducible)

Theorem 9 (Czap et al., 2012)

For every bridgeless plane graph G it holds that

$$
\chi_{f p}(G) \leq 20
$$

Upper bounds

 Odd subgraphs
Lemma 10

Every connected plane graph admits a proper facial coloring of edges with at most 4 colors such that for every color the number of common edges between any pair of faces colored by c is odd or 0 , unless the common edges of the pair form C_{5}. In that case, we use precisely one color twice.

Theorem 11

For every bridgeless plane graph G it holds that

$$
\chi_{f p}(G) \leq 16
$$

Other results

Theorem 12 (Czap, 2012)

For every bridgeless outerplane graph G it holds that

$$
\chi_{f p}(G) \leq 15
$$

Theorem 13 (Czap, 2012)

For every bridgeless cactus graph G it holds that

$$
\chi_{f p}(G) \leq 10
$$

Theorem 14 (Czap et al., 2012)
For every k-edge-connected plane graph G it holds that

- $\chi_{f p}(G) \leq 12$, if $k=3$;
- $\chi_{f p}(G) \leq 9$, if $k=4$.

Thank you!

