On facial parity edge colorings

Borut Lužar joint work with Riste Škrekovski

Faculty of Information Science, Novo mesto & Institute of Mathematics, Physics and Mechanics, Ljubljana, Slovenia

July 9, 2013

Facial edge colorings

edge colorings \rightarrow facial edge colorings (restrictions given by the faces of an embedding to which an edge belongs)

- proper (4 colors),
- non-repetitive (8 colors),
- distance or k-facial (3k + 1?).

Motivation

Definition 1 (Bunde et al., 2007)

A *parity edge coloring* of a graph is a coloring of edges, where on every (nontrivial) path at least one color appears odd times.

- parity chromatic index, p(G) the minimum number of colors needed for a parity edge coloring
- proper edge coloring $\Rightarrow \Delta(G) \le \chi'(G) \le p(G)$
- $p(G) \ge \lceil \log_2 |V(G)| \rceil$ with equality for paths and even cycles

Definition

Definition 2 (Czap et al., 2011)

A facial parity edge coloring of a connected bridgeless plane graph is a facially proper edge coloring in which for each face fand each color c, either no edge or an odd number of edges incident to f is coloured with c.

The minimum number of colors needed for a facial parity edge coloring of a graph G is *facial parity chromatic index*, $\chi_{fp}(G)$.

In 2012, Czap presented a graph with $\chi_{fp}(G) = 10$.

Facial Parity Edge Coloring

イロト イヨト イヨト イヨト

In 2012, Czap presented a graph with $\chi_{fp}(G) = 10$.

Facial Parity Edge Coloring

In 2012, Czap presented a graph with $\chi_{fp}(G) = 10$.

Facial Parity Edge Coloring

In 2012, Czap presented a graph with $\chi_{fp}(G) = 10$.

Facial Parity Edge Coloring

In 2012, Czap presented a graph with $\chi_{fp}(G) = 10$.

Upper bounds Discharging

Theorem 3 (Czap et al., 2011)

For every bridgeless plane graph G it holds that

 $\chi_{fp}(G) \le 92.$

Proved using the discharging method.

Facial Parity Edge Coloring

Second approach:

- color the edges facially proper;
- divide each color class into subclasses to fulfill the parity condition.

Facially proper edge coloring needs 4 colors (vertex coloring of the medial graph)

Definition 4

An $odd \ subgraph$ of a graph is a subgraph where all the vertices have odd or zero degree.

Theorem 5 (Pyber, 1991)

The edges of every simple graph can be covered by 4 edge disjoint odd subgraphs.

▲ □ ▶ < □ ▶</p>

Definition 4

An *odd subgraph* of a graph is a subgraph where all the vertices have odd or zero degree.

Theorem 5 (Pyber, 1991)

The edges of every simple graph can be covered by 4 edge disjoint odd subgraphs.

Definition 4

An *odd subgraph* of a graph is a subgraph where all the vertices have odd or zero degree.

Theorem 5 (Pyber, 1991)

The edges of every simple graph can be covered by 4 edge disjoint odd subgraphs.

Theorem 6

The edges of every multigraph graph G without loops can be covered by 6 edge disjoint odd subgraphs.

< ロト < 同ト < ヨト < ヨト

Theorem 6

The edges of every multigraph graph G without loops can be covered by 6 edge disjoint odd subgraphs.

The only graph that needs 6 odd subgraphs:

#7 ► 1 €

- color the edges facially proper;
- for each color c create dual D_c restricted to c
- partition D_c into odd subgraphs

Facial Parity Edge Coloring

- color the edges facially proper;
- for each color c create dual D_c restricted to c
- partition D_c into odd subgraphs

Facial Parity Edge Coloring

- color the edges facially proper;
- for each color c create dual D_c restricted to c
- partition D_c into odd subgraphs

Facial Parity Edge Coloring

- color the edges facially proper;
- for each color c create dual D_c restricted to c
- partition D_c into odd subgraphs

Facial Parity Edge Coloring

- color the edges facially proper;
- for each color c create dual D_c restricted to c
- partition D_c into odd subgraphs

Facial Parity Edge Coloring

- color the edges facially proper;
- for each color c create dual D_c restricted to c
- partition D_c into odd subgraphs

Facial Parity Edge Coloring

Second approach:

- \bullet color the edges facially proper $\rightarrow 4$ colors
- for each color c create dual D_c restricted to c
- partition D_c into odd subgraphs $\rightarrow \leq 6$ colors

Theorem 7

For every bridgeless plane graph G it holds that

 $\chi_{fp}(G) \le 24.$

(日) (周) (日) (日)

Lemma 8 (Czap et al., 2012)

Every connected plane graph admits a proper facial coloring of edges with at most 5 colors such that for every color the number of common edges between any pair of faces colored by c is odd or 0.

Avoiding multigraphs to use Theorem 5 (since pairs of parallel edges are reducible)

Theorem 9 (Czap et al., 2012)

For every bridgeless plane graph G it holds that

 $\chi_{fp}(G) \le 20.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Lemma 10

Every connected plane graph admits a proper facial coloring of edges with at most 4 colors such that for every color the number of common edges between any pair of faces colored by c is odd or 0, unless the common edges of the pair form C_5 . In that case, we use precisely one color twice.

Theorem 11

For every bridgeless plane graph G it holds that

 $\chi_{fp}(G) \le 16\,.$

Facial Parity Edge Coloring

・ロト ・ 同ト ・ ヨト ・ ヨト

Other results

Theorem 12 (Czap, 2012)

For every bridgeless outerplane graph G it holds that

 $\chi_{fp}(G) \le 15 \, .$

Theorem 13 (Czap, 2012)

For every bridgeless cactus graph G it holds that

 $\chi_{fp}(G) \le 10\,.$

Theorem 14 (Czap et al., 2012)

For every k-edge-connected plane graph G it holds that

•
$$\chi_{fp}(G) \le 12$$
, if $k = 3$;

•
$$\chi_{fp}(G) \le 9$$
, if $k = 4$.

Thank you!

Facial Parity Edge Coloring