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Basics

For a graph G = (V ,E ), a k-edge-coloring is a function

f : E 7→ {1, 2, . . . , k}

(we can think of the k values as colors...)

Today, we consider only proper edge-colorings, i.e. adjacent

edges receive distinct colors

The smallest integer k for which G admits a (proper)

k-edge-coloring is called the chromatic index of G , χ′(G )
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Vizing's Theorem

Our main goal today: determine chromatic index as accurate

as possible (for a selected class of graphs)!

Lower bound: adjacent edges must receive distinct colors, so

∆(G ) ≤ χ′(G )

Theorem 1 (Vizing, 1964)

For every (simple) graph G

∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1.
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Planar graphs

Conjecture 2 (Vizing, 1965)

For every planar graph G with ∆(G ) ≥ 6

χ′(G ) = ∆(G ).

Theorem 3 (Sanders & Zhao, 2001)

For every planar graph G with ∆(G ) ≥ 7

χ′(G ) = ∆(G ).
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Planar graphs

For planar graphs of maximum degree at most 5, there are

graphs G that need ∆(G ) + 1 colors, e.g.:



Bipartite and complete graphs

Theorem 4 (König, 1916)

For every bipartite graph G

χ′(G ) = ∆(G ).

For complete graphs K2k , we have 2k − 1 disjoint perfect

matchings; we assign the same color to all edges of a

matching, so:

χ′(K2k) = ∆(K2k) = 2k − 1.

Complete graphs of odd order need additional color:

χ′(K2k+1) = ∆(K2k+1) + 1 = 2k + 1.



Bipartite and complete graphs

Theorem 4 (König, 1916)

For every bipartite graph G

χ′(G ) = ∆(G ).

For complete graphs K2k , we have 2k − 1 disjoint perfect

matchings; we assign the same color to all edges of a

matching, so:

χ′(K2k) = ∆(K2k) = 2k − 1.

Complete graphs of odd order need additional color:

χ′(K2k+1) = ∆(K2k+1) + 1 = 2k + 1.



Adding assumptions

How do the bounds for chromatic index change if we add

additional assumptions to the coloring?

We will focus on three types:

Acyclic edge-coloring;

Strong edge-coloring;

Star edge-coloring.
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Acyclic edge-coloring

An acyclic k-edge-coloring of a graph G is a k-edge-coloring
where the edges of every cycle are assigned at least three

distinct colors, i.e., there are no bichromatic cycles.

The smallest k for which an acyclic k-edge coloring of G exists

is the acyclic chromatic index of G , χ′a(G ).
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The Conjecture

Conjecture 5 (Fiam£ík, 1978; Alon, Sudakov, Zaks, 2001)

For every graph G it holds

∆(G ) ≤ χ′a(G ) ≤ ∆(G ) + 2.

Super-surprising: Only one additional color is enough?!

If G is d-regular, then χ′a(G ) ≥ d + 1.

Otherwise, every pair of colors induces a 2-factor, since every

color is present at every vertex.

Super-surprising 2: Conjecture 5 is not con�rmed even for

complete graphs!
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Complete graphs

Proposition 6

For even complete graph K2n and F ⊂ E (K2n), |F | ≤ n− 2, it holds

χ′a(K2n\F ) ≥ 2n + 1 = ∆(K2n\F ) + 2 .

Proof.

There are at most n edges of one color and they induce a

perfect matching. Hence, the other colors are assigned to at

most n − 1 edges.

There are 2n2 − n edges in K2n.

Using only 2n = ∆(K2n) + 1 colors leaves at least n − 1 edges

uncolored.
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Perfect 1-factorization

Conjecture 7 (Kotzig, 1964)

For every n ≥ 2, K2n can be decomposed into 2n − 1 perfect

matchings such that the union of any two matchings forms a

hamiltonian cycle in K2n.

Closely related to acyclic edge-colorings.

If the Conjecture 7 is true, the removal of one vertex from K2n

results in an acyclic edge coloring of K2n−1 with

2n − 1 = ∆(K2n−1) + 1 colors, which is optimal.

If Kn+1 has perfect 1-factorization, then Kn,n has it also.
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General graphs

Several upper bounds have been proven repeatedly, all using

probabilistic approaches

Theorem 8 (Giotis et al., 2017)

For every graph G it holds

χ′a(G ) ≤ d3.74 (∆(G )− 1)e+ 1

Theorem 9 (Alon, Sudakov, Zaks, 2001)

For every graph G with girth at least C∆(G ) log∆(G ), for a
constant C , it holds

χ′a(G ) ≤ ∆(G ) + 2 .
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Subcubic graphs

The notion of acyclic colorings was �rst introduced in 1973 by

Gr¶nbaum for the vertex version. In 1979, Burnstein proved

that 5 colors su�ce for acyclic vertex coloring of every graph

G with ∆(G ) ≤ 4.

The maximum degree of a line graph L(G ) of a subcubic

graph G is at most 4...

Corollary 10 (Burnstein, 1979)

Let G be a subcubic graph. Then

χ′a(G ) ≤ 5 .
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Hypercubes

Muthu considered acyclic edge-coloring of Cartesian products

of graphs. As a corollary, he obtained a bound for hypercubes

Theorem 11 (Muthu, 2007)

For hypercubes Qn of dimension n ≥ 2 it holds

χ′a(Qn) = n + 1 .



Hypercubes

Muthu considered acyclic edge-coloring of Cartesian products

of graphs. As a corollary, he obtained a bound for hypercubes

Theorem 11 (Muthu, 2007)

For hypercubes Qn of dimension n ≥ 2 it holds

χ′a(Qn) = n + 1 .



Planar graphs

Another candidate class of graphs to con�rm Conjecture 7

Con�rmed for triangle-free planar graphs

In general we are close...

Theorem 12 (Wang, Zhang, 2017+)

Let G be a planar graph. Then

χ′a(G ) ≤ ∆(G ) + 6 .
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Planar graphs - ∆ colors

Cohen, Havet and Müller conjectured that all planar graphs

with su�ciently large maximum degree have acyclic chromatic

index equal to ∆

Theorem 13 (Cranston, 2017+)

Let G be a planar graph with ∆(G ) ≥ 4.2 · 1014 . Then

χ′a(G ) = ∆(G ) .
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De�nition

Distance between edges: distance between corresponding

vertices in the line graph (adjacent edges are at distance 1)

A strong k-edge-coloring of a graph G is a proper

k-edge-coloring where the edges of every path of length 3 have

three distinct colors, i.e., not only incident edges but also the

edges at distance 2 have distinct colors.

The smallest k for which G admits a strong k-edge-coloring is

the strong chromatic index of G , χ′s(G ).

Strong edge coloring of G is a vertex 2-distance coloring of its

line graph L(G )
χ′s(G ) = χ(L(G )2) .
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s(G) = 7



Quick test

Determine χ′s(Kn)!

Yes, χ′s(Kn) =
(n
2

)
Determine χ′s(Kn,m)!
Yes, χ′s(Kn,m) = n ·m
Determine χ′s(Pn)!
Yes, χ′s(Pn) = 3, if n ≥ 4

Determine χ′s(Cn)!
Yes, 3 ≤ χ′s(Cn) ≤ 5
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The Conjecture

Strong edge-coloring was initiated by Fouquet and Jolivet in

1982.

Erd®s and Ne²et°il in 1985 proposed a conjecture on the upper

bound.

Conjecture 14 (Erd®s, Ne²et°il, 1985)

For every graph G it holds

χ′s(G ) ≤

{ 5
4∆(G )2 , ∆(G ) is even;

1
4(5∆(G )2 − 2∆(G ) + 1) , ∆(G ) is odd.
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The Conjecture

The bounds in Conjecture 14 are tight:

∆(G) = 4 ∆(G) = 5



The Conjecture

The construction of graphs achieving the conjectured bound:

For even ∆ replace each vertex of a 5-cycle with ∆
2 vertices;

For odd ∆ replace two consecutive vertices of a 5-cycle with
∆+1
2 vertices and the others with ∆−1

2 vertices.



General graphs

By greedy method, we have χ′s(G ) ≤ 2∆(G )(∆(G )− 1) + 1

As in the acyclic case, several upper bounds have been proven

repeatedly, all using probabilistic approaches

Theorem 15 (Bonamy, Perret, Postle, 2017+)

For every graph G with su�ciently large maximum degree it holds

χ′s(G ) ≤ 1.835∆(G )2
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Subcubic & Subquartic graphs

Theorem 16 (Andersen, 1992)

Let G be a graph with ∆(G ) = 3. Then,

χ′s(G ) ≤ 10 .

Theorem 17 (Cranston, 2006)

Let G be a graph with ∆(G ) = 4. Then,

χ′s(G ) ≤ 22 .
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Bipartite graphs

Conjecture 18 (Faudree et al., 1990)

Let G be a bipartite graph. Then,

χ′s(G ) ≤ ∆(G )2 .

And even stronger version:

Conjecture 19 (Brualdi, Quinn Massey, 1993)

If G is bipartite graph with maximum degree of partite sets ∆1 and

∆2, then

χ′s(G ) ≤ ∆1 ·∆2 .
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Theorem 20 (Steger, Yu, 1993)

Let G be a subcubic bipartite graph. Then,

χ′s(G ) ≤ 9 .

Theorem 21 (Nakprasit, 2008)

Let G be a bipartite graph with maximum degree of partite sets 2

and ∆, then

χ′s(G ) ≤ 2∆ .

For (3,∆)-graphs there is a weaker result: χ′s(G ) ≤ 4∆
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Hypercubes

Theorem 22 (Faudree et al., 1990)

For a d-dimensional hypercube Qd it holds

χ′s(Qd) = 2 d if d ≥ 2.

Proof.

Lower bound is achieved by C4 and edges incident to two of its

consecutive vertices.

For the upper bound, take the set of edges Ei of i-th dimension

Divide Ei into two sets E 0
i and E 1

i , depending on the parity of

the sum of all coordinates (except i-th) of one of endvertices

(0 or 1, respectively)

Color all E 0
i and E 1

i with distinct colors
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Planar graphs

Theorem 23 (Faudree et al., 1990)

Let G be a planar graph. Then,

χ′s(G ) ≤ 4∆(G ) + 4 .

Proof.

Color G properly with χ′(G ) colors

Let Mi be the set of the edges of same color. Let G (Mi ) be a

graph induced by Mi where every edge from Mi is contracted

Since G (Mi ) is planar, its vertices (the edges of Mi ) can be

colored with 4 colors by the Four Color Theorem, hence all the

edges with a common edge receive distinct color

Altogether we need 4 χ′(G ) colors
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Planar graphs

The above bound is pretty tight: Faudree et al. presented a

construction of planar graphs with χ′s(G ) = 4∆(G )− 4

Join two copies of K2,m along a �xed 4-cycle.
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Planar graphs

Forbidding short cycles in planar graphs, gives us some more

freedom

Conjecture 24 (Hudák et al., 2014)

There exists a constant C such that for every planar graph G with

girth k ≥ 5 it holds

χ′s(G ) ≤

⌈
2k(∆(G )− 1)

k − 1

⌉
+ C
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Star edge-coloring



De�nition

Somewhere between strong edge-coloring and acyclic

edge-coloring

Forbidding longer bichromatic paths as strong and only short

bichromatic cycles

A star edge-coloring of a graph G is a proper edge-coloring

without bichromatic paths and cycles of length 4

The smallest k for which a star k-edge-coloring of G exists is

the star chromatic index of G , χ′
st

(G ).

The name �star� comes from the vertex version where every

pair of colors induces a star forest
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χ′
st(K4) = 5



Complete graphs

Theorem 25 (Dvo°ák, Mohar, �ámal, 2013)

The star chromatic index of the complete graph Kn satis�es

2n
n − 1

n + 2
≤ χ′

st
(Kn) ≤ n

22
√
2(1+o(1))

√
log n

(log n)1/4
.

In particular, for every ε > 0 there exists a constant c such that

χ′
st

(Kn) ≤ cn1+ε for every n ≥ 1.

The lower bound can be improved to 3n n−1
n+4 using the same

argument as Dvo°ák et al.
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The Conjecture

There is no particularly nice conjecture for general graphs, so

the main conjecture in this �eld is related to complete graphs

Conjecture 26 (Dvo°ák, Mohar, �ámal, 2013)

The star chromatic index of the complete graph Kn is linear in n,
i.e.,

χ′
st

(Kn) ∈ O(n).



The Conjecture

There is no particularly nice conjecture for general graphs, so

the main conjecture in this �eld is related to complete graphs

Conjecture 26 (Dvo°ák, Mohar, �ámal, 2013)

The star chromatic index of the complete graph Kn is linear in n,
i.e.,

χ′
st

(Kn) ∈ O(n).



Open problems

Apart from graphs of maximum degree at most 2, we do not

know much about this index

Open for complete graphs, complete bipartite graphs,

hypercubes,...

The upper bound for general graphs is obtained from the

bound for complete graphs

Theorem 27 (Dvo°ák, Mohar, �ámal, 2013)

For a graph G it holds

χ′
st

(G ) ≤ χ′
st

(K∆(G)+1) · O
(

log∆(G )

log log∆(G )

)2

,

and therefore χ′
st

(G ) ≤ ∆(G ) · 2O(1)
√

log ∆(G).
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Trees and outerplanar graphs

Theorem 28 (Bezegová et al., 2016)

For a tree T it holds

χ′
st

(T ) ≤

⌊
3∆(T )

2

⌋
,

Theorem 29 (Bezegová et al., 2016)

For an outerplanar graph G it holds

χ′
st

(G ) ≤

⌊
3∆(G )

2

⌋
+ 12 ,



Subcubic graphs

The most analyzed class are subcubic graphs

Theorem 30 (Dvo°ák, Mohar, �ámal, 2013)

(a) If G is a subcubic graph, then χ′
st

(G ) ≤ 7.

(b) If G is a simple cubic graph, then χ′
st

(G ) ≥ 4, and the equality

holds if and only if G covers the graph of the 3-cube.

There is no known subcubic graph with χ′
st

(G ) = 7, so Dvo°ák

et al. conjectured that 6 colors su�ces

Con�rmed for subcubic outerplanar graphs (5 colors)
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List version

Question 31 (Dvo°ák, Mohar, �ámal, 2013)

Is it true that ch′
st
≤ 7 for every subcubic graph G? (Perhaps even

≤ 6?)

Theorem 32 (Luºar, Mockov£iaková, Soták, 2017+)

For a subcubic graph G it holds

ch′
st

(G ) ≤ 7 .
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