On Incidence Colorings of Graphs

Borut Lužar¹

joint work with

Petr Gregor² & Roman Soták³

¹Faculty of Information Studies, Novo mesto, Slovenia

²Charles University, Prague, Czech Republic

³Pavol J. Šafárik University, Košice, Slovakia

March 14, 2016

Incidences

- In a graph G, an incidence is a pair (v, e), where $v \in V(G)$, $e \in E(G)$, and v is incident to e.
- Two incidences (v, e) and (u, f) are adjacent if:
 - (a) v = u, or
 - (b) e = f, or
 - (c) $vu \in \{e, f\}.$

■ A *k*-incidence coloring of a graph is any coloring of its incidences such that adjacent incidences receive distinct colors.

- A k-incidence coloring of a graph is any coloring of its incidences such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, $\chi_i(G)$.

- A *k*-incidence coloring of a graph is any coloring of its incidences such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, $\chi_i(G)$.
- Defined by Brualdi and Massey in 1993.

- A k-incidence coloring of a graph is any coloring of its incidences such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, $\chi_i(G)$.
- Defined by Brualdi and Massey in 1993.
- Related to other colorings, e.g. strong edge-colorings of fully subdivided graphs.

- A *k*-incidence coloring of a graph is any coloring of its incidences such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, $\chi_i(G)$.
- Defined by Brualdi and Massey in 1993.
- Related to other colorings, e.g. strong edge-colorings of fully subdivided graphs.
- **Example:** C_3

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_c(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_c(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

Spectrum gives us a simple lower bound:

$$\chi_i(G) \ge \min_{c} \max_{v \in V(G)} |S_c(v)| \ge \Delta(G) + 1.$$

- Two types of colors in the spectrum of v:
 - colors of incidences of type $(v, uv) S_0(v)$;
 - colors of incidences of type (u, uv) $S_1(v)$.

- Two types of colors in the spectrum of *v*:
 - colors of incidences of type $(v, uv) S_0(v)$;
 - colors of incidences of type $(u, uv) S_1(v)$.
- $|S_0(v)| = d(v)$ and $|S_1(v)| \ge 1$

- Two types of colors in the spectrum of *v*:
 - colors of incidences of type $(v, uv) S_0(v)$;
 - colors of incidences of type $(u, uv) S_1(v)$.
- $|S_0(v)| = d(v)$ and $|S_1(v)| \ge 1$
- A (k, p)-incidence coloring is a k-incidence coloring, with $|S_1(v)| \le p$, for every $v \in V(G)$.

- Two types of colors in the spectrum of *v*:
 - colors of incidences of type $(v, uv) S_0(v)$;
 - colors of incidences of type $(u, uv) S_1(v)$.
- $|S_0(v)| = d(v)$ and $|S_1(v)| \ge 1$
- A (k, p)-incidence coloring is a k-incidence coloring, with $|S_1(v)| \le p$, for every $v \in V(G)$.
- The smallest k for which a (k, p)-incidence coloring of a graph G exists is denoted $\chi_{i,p}(G)$.

- Two types of colors in the spectrum of *v*:
 - colors of incidences of type $(v, uv) S_0(v)$;
 - colors of incidences of type $(u, uv) S_1(v)$.
- $|S_0(v)| = d(v)$ and $|S_1(v)| \ge 1$
- A (k, p)-incidence coloring is a k-incidence coloring, with $|S_1(v)| \le p$, for every $v \in V(G)$.
- The smallest k for which a (k, p)-incidence coloring of a graph G exists is denoted $\chi_{i,p}(G)$.
- $\chi_i(G) \leq \chi_{i,p}(G)$

$(\Delta + 1)$ -graphs

■ A $(\Delta + 1)$ -graph is every graph G with

$$\chi_i(G) = \chi_{i,1}(G) = \Delta(G) + 1.$$

- Complete graphs, trees, outerplanar graphs with $\Delta \geq 7$, planar graphs with $\Delta \geq 14,...$
- $\chi_i(G) \leq \chi_{i,1}(G) = \chi(G^2)$

$(\Delta + 1)$ -graphs

■ A $(\Delta + 1)$ -graph is every graph G with

$$\chi_i(G) = \chi_{i,1}(G) = \Delta(G) + 1.$$

- Complete graphs, trees, outerplanar graphs with $\Delta \geq 7$, planar graphs with $\Delta \geq 14,...$
- $\chi_i(G) \leq \chi_{i,1}(G) = \chi(G^2)$

Theorem 1 (Sun, 2012)

If G is an n-regular graph, then $\chi_i(G) = n + 1$ if and only if V(G) is a disjoint union of n + 1 (perfect) dominating sets.

$(\Delta + \ell)$ -graphs

■ A $(\Delta + \ell)$ -graph is every graph G with

$$\chi_i(G) \leq \Delta(G) + \ell$$
.

■ A (k, p)-graph is every graph G with

$$\chi_{i,p}(G) \leq k$$
.

$(\Delta + 2)$ -conjecture

Conjecture 2 (Brualdi & Massey, 1993)

For every graph G

$$\chi_i(G) \leq \Delta(G) + 2$$
.

$(\Delta + 2)$ -conjecture

Conjecture 2 (Brualdi & Massey, 1993)

For every graph G

$$\chi_i(G) \leq \Delta(G) + 2$$
.

- Guilduli, 1997 Conjecture is false
- Paley graphs need $\Delta + \Omega(\log \Delta)$

Theorem 3 (Guilduli, 1997)

For every graph G

$$\chi_i(G) \leq \Delta(G) + 20 \log(\Delta(G)) + 84$$
.

$(\Delta + 2)$ -conjecture

- Conjecture 2 holds for e.g. cubic, partial 2-trees (hence also outerplanar graphs), toroidal grids, planar graphs with girth at least 6 and maximum degree at least 5, complete bipartite graphs,...
- Exists a graph G on 11 vertices with maximum degree 6 and

$$\chi_i(G) = 9$$
.

■ Open for degrees 4 and 5.

Theorem 4

For every graph G with maximum degree 4,

$$\chi_i(G) \leq 7$$
.

Hypercubes

Theorem 5 (Pai et al., 2014)

For every integers $p, q \ge 1$,

- (i) $\chi_i(Q_n) = n+1$, if $n = 2^p 1$;
- (ii) $\chi_i(Q_n) = n+2$, if $n = 2^p 2$ and $p \ge 2$, or $n = 2^p + 2^q 1$, or $n = 2^p + 2^q 3$ and $p, q \ge 2$.

Hypercubes conjecture

Our motivation:

Conjecture 6 (Pai et al., 2014)

For every $n \ge 1$ such that $n \ne 2^p - 1$ for every integer $p \ge 1$,

$$\chi_i(Q_n)=n+2.$$

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$\chi_i(G \square H) \leq \chi_i(G) + \chi_i(H)$$
.

Is it possible that Conjecture 2 holds for Cartesian products?

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$\chi_i(G \square H) \leq \chi_i(G) + \chi_i(H)$$
.

- Is it possible that Conjecture 2 holds for Cartesian products?
- No.

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$\chi_i(G \square H) \leq \chi_i(G) + \chi_i(H)$$
.

- Is it possible that Conjecture 2 holds for Cartesian products?
- No.
- Consider a Paley graph P and K_2 ,

$$\chi_i(P \square K_2) = \Delta(P \square K_2) + \Omega(\log(P \square K_2)).$$

Cartesian products -1 color

Cartesian products (-1 color)

Theorem 7

Let G be a $(\Delta+1)$ -graph and let H be a subgraph of a regular $(\Delta+1)$ -graph H' such that

$$\Delta(G) + 1 \ge \Delta(H') - \Delta(H)$$
.

Then,

$$\chi_i(G \square H) \leq \Delta(G \square H) + 2.$$

Proof (1/3).

• c optimal i. c. of G with $A = \{0, \dots, \Delta(G)\}$

- c optimal i. c. of G with $A = \{0, \dots, \Delta(G)\}$
- d' optimal i. c. of H' with $B = \{t, \dots, \Delta(H') + t\}$, where $t = \Delta(G) + \Delta(H) \Delta(H') + 1 \ge 0$ (call t an offset)

- c optimal i. c. of G with $A = \{0, \dots, \Delta(G)\}$
- d' optimal i. c. of H' with $B = \{t, \dots, \Delta(H') + t\}$, where $t = \Delta(G) + \Delta(H) \Delta(H') + 1 \ge 0$ (call t an offset)
- d' is optimal $\Rightarrow |S_{d'}(v)| = |B|$ for every $v \in H'$

- c optimal i. c. of G with $A = \{0, \dots, \Delta(G)\}$
- d' optimal i. c. of H' with $B = \{t, \dots, \Delta(H') + t\}$, where $t = \Delta(G) + \Delta(H) \Delta(H') + 1 \ge 0$ (call t an offset)
- d' is optimal $\Rightarrow |S_{d'}(v)| = |B|$ for every $v \in H'$
- \bullet $d = d'|_{H}$ i. c. of H with at most |B| colors

- c optimal i. c. of G with $A = \{0, \dots, \Delta(G)\}$
- d' optimal i. c. of H' with $B = \{t, \dots, \Delta(H') + t\}$, where $t = \Delta(G) + \Delta(H) \Delta(H') + 1 \ge 0$ (call t an offset)
- d' is optimal $\Rightarrow |S_{d'}(v)| = |B|$ for every $v \in H'$
- $d = d'|_{H}$ i. c. of H with at most |B| colors
- $C = A \cap B = \{t, ..., \Delta(G)\}$ overlapping colors between c and d

- c optimal i. c. of G with $A = \{0, \dots, \Delta(G)\}$
- d' optimal i. c. of H' with $B = \{t, \dots, \Delta(H') + t\}$, where $t = \Delta(G) + \Delta(H) \Delta(H') + 1 \ge 0$ (call t an offset)
- d' is optimal $\Rightarrow |S_{d'}(v)| = |B|$ for every $v \in H'$
- $d = d'|_{H}$ i. c. of H with at most |B| colors
- $C = A \cap B = \{t, ..., \Delta(G)\}$ overlapping colors between c and d
- $|C| = \Delta(G) t + 1 = \Delta(H') \Delta(H)$

- c optimal i. c. of G with $A = \{0, \dots, \Delta(G)\}$
- d' optimal i. c. of H' with $B = \{t, \dots, \Delta(H') + t\}$, where $t = \Delta(G) + \Delta(H) \Delta(H') + 1 \ge 0$ (call t an offset)
- d' is optimal $\Rightarrow |S_{d'}(v)| = |B|$ for every $v \in H'$
- $d = d'|_{H}$ i. c. of H with at most |B| colors
- $C = A \cap B = \{t, ..., \Delta(G)\}$ overlapping colors between c and d
- $|C| = \Delta(G) t + 1 = \Delta(H') \Delta(H)$
- $lacksquare H\subseteq H'$ and $d=d'ig|_{H}\Rightarrow |S_{d}(v)|=d(v)+1\leq \Delta(H)+1$

Proof (2/3).

■ $M(v) = B \setminus S_d(v)$ - colors from B missing at v

- $M(v) = B \setminus S_d(v)$ colors from B missing at v
- $|M(v)| = |B| |S_d(v)| \ge \Delta(H') \Delta(H) = |C|$

Proof of Theorem 7

Proof (2/3).

- $M(v) = B \setminus S_d(v)$ colors from B missing at v
- $|M(v)| = |B| |S_d(v)| \ge \Delta(H') \Delta(H) = |C|$
- ⇒ exists an injective mapping

$$g_v : C \to M(v)$$

Proof of Theorem 7

Proof (2/3).

- $M(v) = B \setminus S_d(v)$ colors from B missing at v
- $|M(v)| = |B| |S_d(v)| \ge \Delta(H') \Delta(H) = |C|$
- ⇒ exists an injective mapping

$$g_v : C \to M(v)$$

 \blacksquare \Rightarrow exists i.c. f of $G \square H$ with

$$|A| + |B| - |C| = \Delta(G) + 1 + \Delta(H') + 1 - (\Delta(H') - \Delta(H))$$
$$= \Delta(G) + \Delta(H) + 2$$
$$= \Delta(G \square H) + 2$$

Proof of Theorem 7

Proof (3/3).

■ For every pair of vertices $u \in V(G)$, $v \in V(H)$, and edges $uu' \in E(G)$, $vv' \in E(H)$, we define f:

$$\begin{split} f\big((u,v),(u,v)(u,v')\big) &= d(v,vv'), \quad \text{and} \\ f\big((u,v),(u,v)(u',v)\big) &= \left\{ \begin{array}{ll} c(u,uu') & \text{if } c(u,uu') \notin C, \\ g_v(c(u,uu')) & \text{if } c(u,uu') \in C. \end{array} \right. \end{split}$$

■ We check that f is indeed an i.c. on the board

Hypercubes - revisited

Corollary 8

For every $n \ge 1$,

$$\chi_i(Q_n) = \begin{cases} n+1 & \text{if } n=2^m-1 \text{ for some integer } m \geq 0, \\ n+2 & \text{otherwise.} \end{cases}$$

Sketch of the proof: $Q_n = Q_{n-k} \square Q_k$, with $k \le n$, and take $n = 2^m - 1 + k$.

Generalization

(Simplified version)

Theorem 9 (Shiau, Shiau, Wang, 2015)

Let G and H be arbitrary graphs and s(H) the maximum size of a spectrum in H. If $\chi_i(G) \ge \chi_i(H) - s(H)$, then

$$\chi_i(G \square H) \leq \chi_i(G) + s(H)$$
.

Cartesian products -2 colors

Locally injective homomorphisms

 \blacksquare A homomorphism f of G to H is a mapping

$$f: V(G) \rightarrow V(H)$$

such that if $uv \in E(G)$, then $f(u)f(v) \in E(H)$.

- A homomorphism f is locally injective if $f(u) \neq f(v)$ for every $v \in V(G)$ and every pair $vu, vw \in E(G)$.
- f is injective on N(v), for every $v \in V(G)$
- locally injective homomorphisms preserve adjacencies of incidences

Locally injective homomorphisms

Theorem 10 (Duffy, 2015)

Let G and H be simple graphs such that G admits a locally injective homomorphism to H. Then

$$\chi_i(G) \leq \chi_i(H)$$
.

Proposition 11

A graph G admits a (k,1)-incidence coloring iff it admits a locally injective homomorphism to K_k .

- K_{2n}^- is a complete graph on 2n vertices without a perfect matching
- A connected 2d-regular graph G is 2-permutable if it admits a locally injective homomorphism to K_{2d+2}^- .

- K_{2n}^- is a complete graph on 2n vertices without a perfect matching
- A connected 2d-regular graph G is 2-permutable if it admits a locally injective homomorphism to K_{2d+2}^- .
- So:
 - G is (2d + 2)-partite (with partition sets P_1, \ldots, P_{2d+2});
 - For every i, $1 \le i \le 2d + 2$, exists \overline{i} such that there are no edges between P_i and $P_{\overline{i}}$;
 - Every $v \in P_i$ has at most one neighbor in P_j , $j \notin \{i, \bar{i}\}$.
 - Every 2-permutable graph is a $(\Delta + 2, 1)$ -graph.

- K_{2n}^- is a complete graph on 2n vertices without a perfect matching
- A connected 2d-regular graph G is 2-permutable if it admits a locally injective homomorphism to K_{2d+2}^- .
- So:
 - G is (2d+2)-partite (with partition sets P_1, \ldots, P_{2d+2});
 - For every i, $1 \le i \le 2d + 2$, exists \overline{i} such that there are no edges between P_i and $P_{\overline{i}}$;
 - Every $v \in P_i$ has at most one neighbor in P_j , $j \notin \{i, \bar{i}\}$.
 - Every 2-permutable graph is a $(\Delta + 2, 1)$ -graph.
- There exist $(\Delta + 2, 1)$ -graphs which are not 2-permutable, e.g. 7-cycle.

Examples: C_{4n} and K_{2n}^-

Examples: C_{4n} and K_{2n}^-

Among 1544 4-regular graphs of order 12, there are 13
 2-permutable graphs.

Theorem 12

Let G be a 2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1 (= \Delta(G) + 2).$$

Theorem 12

Let G be a 2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1 \ (= \Delta(G) + 2).$$

■ The inverse of Theorem 13 does not hold in general.

Theorem 12

Let G be a 2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1 \ (= \Delta(G) + 2).$$

- The inverse of Theorem 13 does not hold in general.
- The prism over the Dodecahedron is a $(\Delta + 1)$ -graph, while the Dodecahedron is not 2-permutable (it is cubic).

Theorem 12

Let G be a 2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1 \ (= \Delta(G) + 2).$$

- The inverse of Theorem 13 does not hold in general.
- The prism over the Dodecahedron is a $(\Delta + 1)$ -graph, while the Dodecahedron is not 2-permutable (it is cubic).
- The inverse holds for cycles.

Sub-2-permutable graphs

■ A (non-regular) graph G is sub-2-permutable if it admits a locally injective homomorphism to $K_{\Delta(G)+2}^-$.

Sub-2-permutable graphs

■ A (non-regular) graph G is sub-2-permutable if it admits a locally injective homomorphism to $K_{\Delta(G)+2}^-$.

Corollary 13

Let G be a sub-2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1.$$

2-adjustable graphs

- An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_0(v)$.
- x and y are called free colors.

2-adjustable graphs

- An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_0(v)$.
- x and y are called free colors.
- A graph G is 2-adjustable if it admits an adjustable $(\Delta(G) + 2)$ -incidence coloring.

2-adjustable graphs

- An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_0(v)$.
- x and y are called free colors.
- A graph G is 2-adjustable if it admits an adjustable $(\Delta(G) + 2)$ -incidence coloring.
- Example: C₅

■ All $(\Delta + 1)$ -graphs (the color $\Delta(G) + 2$ is never used).

- All $(\Delta + 1)$ -graphs (the color $\Delta(G) + 2$ is never used).
- lacktriangle All $(\Delta+1)$ -graphs together with a matching (two same colors can be put on a matching; they are free)

- All $(\Delta + 1)$ -graphs (the color $\Delta(G) + 2$ is never used).
- All $(\Delta + 1)$ -graphs together with a matching (two same colors can be put on a matching; they are free)
- Cycles, complete bipartite graphs, prisms over C_{6n}

■ By \mathring{K}_n we denote the complete graph of order n with a loop at one vertex.

Figure: A \mathring{K}_5 .

Proposition 14

If a graph G admits a locally injective homomorphism to $\mathring{K}_{\Delta(G)+1}$, then G is 2-adjustable.

Proposition 14

If a graph G admits a locally injective homomorphism to $\mathring{K}_{\Delta(G)+1}$, then G is 2-adjustable.

- The inverse statement is not true in general.
- C_5 is 2-adjustable, but does not admit a locally injective homomorphism to \mathring{K}_3 .

Cartesian products with -2 colors

Theorem 15

Let G be a sub-2-permutable graph and let H be a 2-adjustable graph. Then

$$\chi_i(G \square H) \leq \Delta(G \square H) + 2.$$

Open problems

Conjecture 16

Let G be a
$$(\Delta+1)$$
-graph and H be a $(\Delta+2)$ -graph. Then,

$$\chi_i(G \square H) \leq \Delta(G \square H) + 2.$$

Open problems

Conjecture 16

Let G be a $(\Delta+1)$ -graph and H be a $(\Delta+2)$ -graph. Then, $\chi_i(G \square H) \leq \Delta(G \square H) + 2 \, .$

Question 17

Do there exist graphs G and H with $\chi_i(G) = \Delta(G) + 2$ and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \square H) > \Delta(G \square H) + 2$?

Open problems

Conjecture 16

Let G be a $(\Delta+1)$ -graph and H be a $(\Delta+2)$ -graph. Then, $\chi_i(G \square H) \leq \Delta(G \square H) + 2 \, .$

Question 17

Do there exist graphs G and H with $\chi_i(G) = \Delta(G) + 2$ and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \square H) > \Delta(G \square H) + 2$?

Question 18

When is the Cartesian product of two $(\Delta + 1)$ -graphs also a $(\Delta + 1)$ -graph.

Hvala!