On Incidence Colorings of Graphs

Borut Lužar¹

joint work with

Petr Gregor² & Roman Soták³

¹Faculty of Information Studies, Novo mesto, Slovenia

²Charles University, Prague, Czech Republic

³Pavol J. Šafárik University, Košice, Slovakia

September 5, 2016

(日) (四) (문) (문) (문)

Incidences

- In a graph G, an incidence is a pair (v, e), where $v \in V(G)$, $e \in E(G)$, and v is incident to e.
- Two incidences (v, e) and (u, f) are adjacent if:

(a)
$$v = u$$
, or
(b) $e = f$, or
(c) $vu \in \{e, f\}$.

・ロト ・ 雪 ト ・ ヨ ト

э

A k-incidence coloring of a graph is any coloring of its incidences, using k colors, such that adjacent incidences receive distinct colors.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- A k-incidence coloring of a graph is any coloring of its incidences, using k colors, such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, χ_i(G).

- A k-incidence coloring of a graph is any coloring of its incidences, using k colors, such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, $\chi_i(G)$.

Defined by Brualdi and Massey in 1993.

- A k-incidence coloring of a graph is any coloring of its incidences, using k colors, such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, $\chi_i(G)$.
- Defined by Brualdi and Massey in 1993.
- Related to other colorings, e.g. strong edge-coloring of fully subdivided graphs.

(ロ)、

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

■ For an incidence coloring *c*, the spectrum of a vertex *v*, *S_c*(*v*), is the set of colors assigned to the incidences with the edges containing *v*, i.e.

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

・ロト・日本・モート モー うへぐ

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

◆□ → < @ → < E → < E → ○ < ♡ < ♡</p>

•
$$S_c^0(v) = \{c(v, uv) \mid uv \in E(G)\}$$

■
$$S_c^0(v) = \{c(v, uv) \mid uv \in E(G)\}$$

■ $S_c^1(v) = \{c(u, uv) \mid uv \in E(G)\}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

•
$$S_c^0(v) = \{c(v, uv) \mid uv \in E(G)\}$$

•
$$S_c^1(v) = \{c(u, uv) \mid uv \in E(G)\}$$

•
$$|S_c^0(v)| = d(v)$$
 and $|S_c^1(v)| \ge 1$

•
$$S_c^0(v) = \{c(v, uv) \mid uv \in E(G)\}$$

•
$$S_c^1(v) = \{c(u, uv) \mid uv \in E(G)\}$$

•
$$|S_c^0(v)| = d(v)$$
 and $|S_c^1(v)| \ge 1$

Spectrum gives a simple lower bound:

$$\chi_i(G) \geq \min_{c} \max_{v \in V(G)} |S_c(v)| \geq \Delta(G) + 1.$$

 $(\Delta + 1)$ -graphs

• A $(\Delta + 1)$ -graph is every graph G with

$$\chi_i(G) = \Delta(G) + 1.$$

 \blacksquare Complete graphs, trees, outerplanar graphs with $\Delta \geq$ 7, planar graphs with $\Delta \geq$ 14,...

 $(\Delta + 1)$ -graphs

• A $(\Delta + 1)$ -graph is every graph G with

$$\chi_i(G) = \Delta(G) + 1.$$

• Complete graphs, trees, outerplanar graphs with $\Delta \geq$ 7, planar graphs with $\Delta \geq$ 14,...

Theorem 1 (Sun, 2012)

If G is an n-regular graph, then $\chi_i(G) = n + 1$ if and only if V(G) is a disjoint union of n + 1 (perfect) dominating sets.

$(\Delta + 2)$ -conjecture

Conjecture 2 (Brualdi & Massey, 1993)

For every graph G

 $\chi_i(G) \leq \Delta(G) + 2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$(\Delta + 2)$ -conjecture

Conjecture 2 (Brualdi & Massey, 1993)

For every graph G

 $\chi_i(G) \leq \Delta(G) + 2$.

- Guilduli, 1997 Conjecture is false
- Paley graphs need $\Delta + \Omega(\log \Delta)$
$(\Delta + 2)$ -conjecture

Conjecture 2 (Brualdi & Massey, 1993)

For every graph G

 $\chi_i(G) \leq \Delta(G) + 2$.

- Guilduli, 1997 Conjecture is false
- Paley graphs need $\Delta + \Omega(\log \Delta)$

Theorem 3 (Guilduli, 1997)

For every graph G

 $\chi_i(G) \leq \Delta(G) + 20 \log(\Delta(G)) + 84$.

$(\Delta + 2)$ -conjecture

Conjecture 2 holds for e.g.

- subcubic graphs,
- partial 2-trees (hence also outerplanar graphs),
- toroidal grids,
- planar graphs with girth at least 6 and maximum degree at least 5,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- complete bipartite graphs,
- • •

 $(\Delta + 2)$ -conjecture

The graph G of smallest order being a counter example (Clark & Dunning, 1997):

6-regular, 11 vertices, $\gamma(G) = 3$, $\chi_i(G) = 9$

$(\Delta + 2)$ -conjecture

Theorem 4 (Maydanskiy, 2005)

$$\chi_i(G) \geq \frac{2|E(G)|}{|V(G)| - \gamma(G)}.$$

- So far, the only known graphs being counter-examples to the conjecture are the ones having high domination number
- Open for $\Delta(G) \in \{4, 5\}$.
- Strong edge-coloring result gives χ_i(G) ≤ 2Δ(G) (Nakprasit, 2008)

Subquartic graphs

Theorem 5 (Gregor, \cdot , Soták, 2016)

For every graph G with maximum degree 4,

 $\chi_i(G) \leq 7$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Subquartic graphs

Theorem 5 (Gregor, \cdot , Soták, 2016)

For every graph G with maximum degree 4,

 $\chi_i(G) \leq 7$.

- 4-regular graphs on at most 14 vertices are $(\Delta + 2)$ -graphs;
- [many 4-regular graphs on 15 vertices are $(\Delta + 2)$ -graphs] :)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Subquartic graphs

Theorem 5 (Gregor, \cdot , Soták, 2016)

For every graph G with maximum degree 4,

 $\chi_i(G) \leq 7$.

- 4-regular graphs on at most 14 vertices are $(\Delta + 2)$ -graphs;
- [many 4-regular graphs on 15 vertices are $(\Delta + 2)$ -graphs] :)

Question 6

Is it true that 6 (resp. 7) colors suffice for incidence coloring of graphs with maximum degree 4 *(resp. 5)?*

Hypercubes

Theorem 7 (Pai et al., 2014)

For every integers
$$p, q \ge 1$$
,
(i) $\chi_i(Q_n) = n + 1$, if $n = 2^p - 1$;
(ii) $\chi_i(Q_n) = n + 2$, if $n = 2^p - 2$ and $p \ge 2$, or $n = 2^p + 2^q - 1$,
or $n = 2^p + 2^q - 3$ and $p, q \ge 2$.

(ロ)、(型)、(E)、(E)、 E) の(の)

Hypercubes

Theorem 7 (Pai et al., 2014)

For every integers
$$p, q \ge 1$$
,
(i) $\chi_i(Q_n) = n + 1$, if $n = 2^p - 1$;
(ii) $\chi_i(Q_n) = n + 2$, if $n = 2^p - 2$ and $p \ge 2$, or $n = 2^p + 2^q - 1$,
or $n = 2^p + 2^q - 3$ and $p, q \ge 2$.

Our motivation:

Conjecture 8 (Pai et al., 2014)

For every $n \ge 1$ such that $n \ne 2^p - 1$ for every integer $p \ge 1$,

$$\chi_i(Q_n)=n+2.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$\chi_i(G \Box H) \leq \chi_i(G) + \chi_i(H).$$

Is it possible that Conjecture 2 holds for Cartesian products?

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$\chi_i(G \Box H) \leq \chi_i(G) + \chi_i(H).$$

Is it possible that Conjecture 2 holds for Cartesian products?No.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$\chi_i(G \Box H) \leq \chi_i(G) + \chi_i(H).$$

- Is it possible that Conjecture 2 holds for Cartesian products?No.
- Consider a Paley graph P and K_2 ,

$$\chi_i(P \Box K_2) = \Delta(P \Box K_2) + \Omega(\log(P \Box K_2)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cartesian products -1 color

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cartesian products (-1 color)

Theorem 9 (Gregor, \cdot , Soták, 2016)

Let G be a $(\Delta + 1)$ -graph and let H be a subgraph of a regular $(\Delta + 1)$ -graph H' such that

$$\Delta(G) + 1 \geq \Delta(H') - \Delta(H).$$

Then,

$$\chi_i(G \Box H) \leq \Delta(G \Box H) + 2.$$

Hypercubes - revisited

Corollary 10 (Gregor, ·, Soták, 2016)

For every $n \ge 1$,

$$\chi_i(Q_n) = \left\{ egin{array}{cc} n+1 & \mbox{if } n=2^m-1 \mbox{ for some integer } m\geq 0, \ n+2 & \mbox{otherwise}. \end{array}
ight.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hypercubes - revisited

Corollary 10 (Gregor, ·, Soták, 2016)

For every $n \ge 1$,

$$\chi_i(Q_n) = \left\{ egin{array}{cc} n+1 & ext{if } n=2^m-1 ext{ for some integer } m\geq 0, \ n+2 & ext{otherwise}. \end{array}
ight.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The conjecture has also been solved independently by Shiau, Shiau, Wang, 2015

Cartesian products -2 colors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cartesian products -2 colors

Not today :(

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Open problems

Conjecture 11

Let G be a $(\Delta + 1)$ -graph and H be a $(\Delta + 2)$ -graph. Then, $\chi_i(G \Box H) \le \Delta(G \Box H) + 2.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Open problems

Conjecture 11

Let G be a $(\Delta + 1)$ -graph and H be a $(\Delta + 2)$ -graph. Then,

 $\chi_i(G \Box H) \leq \Delta(G \Box H) + 2.$

Question 12

Do there exist graphs G and H with $\chi_i(G) = \Delta(G) + 2$ and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \Box H) > \Delta(G \Box H) + 2$?

Open problems

Conjecture 11

Let G be a $(\Delta + 1)$ -graph and H be a $(\Delta + 2)$ -graph. Then,

$$\chi_i(G \Box H) \leq \Delta(G \Box H) + 2.$$

Question 12

Do there exist graphs G and H with $\chi_i(G) = \Delta(G) + 2$ and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \Box H) > \Delta(G \Box H) + 2$?

Question 13

When is the Cartesian product of two $(\Delta + 1)$ -graphs also a $(\Delta + 1)$ -graph.

Thank you for your attention!

Locally injective homomorphisms

• A homomorphism f of G to H is a mapping

$$f : V(G) \rightarrow V(H)$$

such that if $uv \in E(G)$, then $f(u)f(v) \in E(H)$.

■ A homomorphism f is locally injective if $f(u) \neq f(v)$ for every $v \in V(G)$ and every pair $vu, vw \in E(G)$.

- f is injective on N(v), for every $v \in V(G)$
- locally injective homomorphisms preserve adjacencies of incidences

Locally injective homomorphisms

Theorem 14 (Duffy, 2015)

Let G and H be simple graphs such that G admits a locally injective homomorphism to H. Then

 $\chi_i(G) \leq \chi_i(H)$.

Proposition 15

A graph G admits a (k, 1)-incidence coloring iff it admits a locally injective homomorphism to K_k .

- K⁻_{2n} is a complete graph on 2n vertices without a perfect matching
- A connected 2*d*-regular graph *G* is 2-permutable if it admits a locally injective homomorphism to K_{2d+2}^- .

- K⁻_{2n} is a complete graph on 2n vertices without a perfect matching
- A connected 2*d*-regular graph *G* is 2-permutable if it admits a locally injective homomorphism to K_{2d+2}^- .
- So:
 - G is (2d + 2)-partite (with partition sets P_1, \ldots, P_{2d+2});
 - For every i, $1 \le i \le 2d + 2$, exists \overline{i} such that there are no edges between P_i and $P_{\overline{i}}$;

- Every $v \in P_i$ has at most one neighbor in P_j , $j \notin \{i, \overline{i}\}$.
- Every 2-permutable graph is a $(\Delta + 2, 1)$ -graph.

- K⁻_{2n} is a complete graph on 2n vertices without a perfect matching
- A connected 2*d*-regular graph *G* is 2-permutable if it admits a locally injective homomorphism to K_{2d+2}^- .
- So:
 - G is (2d + 2)-partite (with partition sets P_1, \ldots, P_{2d+2});
 - For every i, $1 \le i \le 2d + 2$, exists \overline{i} such that there are no edges between P_i and $P_{\overline{i}}$;

- Every $v \in P_i$ has at most one neighbor in P_j , $j \notin \{i, \overline{i}\}$.
- Every 2-permutable graph is a $(\Delta + 2, 1)$ -graph.
- There exist (Δ + 2, 1)-graphs which are not 2-permutable, e.g. 7-cycle.

Examples: C_{4n} and K_{2n}^{-}

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Examples: C_{4n} and K_{2n}^{-}

 Among 1544 4-regular graphs of order 12, there are 13 2-permutable graphs.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Theorem 16

Let G be a 2-permutable graph. Then

$$\chi_i(G \Box K_2) = \Delta(G \Box K_2) + 1 \ (= \Delta(G) + 2).$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Theorem 16

Let G be a 2-permutable graph. Then

$$\chi_i(G \Box K_2) = \Delta(G \Box K_2) + 1 \ (= \Delta(G) + 2).$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The inverse of Theorem 16 does not hold in general.

Theorem 16

Let G be a 2-permutable graph. Then

$$\chi_i(G \Box K_2) = \Delta(G \Box K_2) + 1 \ (= \Delta(G) + 2).$$

- The inverse of Theorem 16 does not hold in general.
- The prism over the Dodecahedron is a (Δ + 1)-graph, while the Dodecahedron is not 2-permutable (it is cubic).

Theorem 16

Let G be a 2-permutable graph. Then

$$\chi_i(G \Box K_2) = \Delta(G \Box K_2) + 1 \ (= \Delta(G) + 2).$$

- The inverse of Theorem 16 does not hold in general.
- The prism over the Dodecahedron is a (Δ + 1)-graph, while the Dodecahedron is not 2-permutable (it is cubic).

The inverse holds for cycles.

Sub-2-permutable graphs

A (non-regular) graph G is sub-2-permutable if it admits a locally injective homomorphism to K⁻_{Δ(G)+2}.

Sub-2-permutable graphs

A (non-regular) graph G is sub-2-permutable if it admits a locally injective homomorphism to K⁻_{Δ(G)+2}.

Corollary 17

Let G be a sub-2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1.$$

2-adjustable graphs

An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_0(v)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• x and y are called free colors.
2-adjustable graphs

An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_0(v)$.

- x and y are called free colors.
- A graph G is 2-adjustable if it admits an adjustable (∆(G) + 2)-incidence coloring.

2-adjustable graphs

An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_0(v)$.

- x and y are called free colors.
- A graph G is 2-adjustable if it admits an adjustable (∆(G) + 2)-incidence coloring.
- Example: C₅

• All $(\Delta + 1)$ -graphs (the color $\Delta(G) + 2$ is never used).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- All $(\Delta + 1)$ -graphs (the color $\Delta(G) + 2$ is never used).
- All (∆ + 1)-graphs together with a matching (two same colors can be put on a matching; they are free)

- All $(\Delta + 1)$ -graphs (the color $\Delta(G) + 2$ is never used).
- All (∆ + 1)-graphs together with a matching (two same colors can be put on a matching; they are free)

• Cycles, complete bipartite graphs, prisms over C_{6n}

By \mathring{K}_n we denote the complete graph of order *n* with a loop at one vertex.

Figure: A \mathring{K}_5 .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Proposition 18

If a graph G admits a locally injective homomorphism to $\mathring{K}_{\Delta(G)+1}$, then G is 2-adjustable.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Proposition 18

If a graph G admits a locally injective homomorphism to $\mathring{K}_{\Delta(G)+1}$, then G is 2-adjustable.

- The inverse statement is not true in general.
- C_5 is 2-adjustable, but does not admit a locally injective homomorphism to \mathring{K}_3 .

Cartesian products with -2 colors

Theorem 19

Let G be a sub-2-permutable graph and let H be a 2-adjustable graph. Then

 $\chi_i(G \Box H) \leq \Delta(G \Box H) + 2.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Open problems

Conjecture 20

Let G be a $(\Delta + 1)$ -graph and H be a $(\Delta + 2)$ -graph. Then, $\chi_i(G \Box H) \le \Delta(G \Box H) + 2.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Open problems

Conjecture 20

Let G be a $(\Delta + 1)$ -graph and H be a $(\Delta + 2)$ -graph. Then,

 $\chi_i(G \Box H) \leq \Delta(G \Box H) + 2.$

Question 21

Do there exist graphs G and H with $\chi_i(G) = \Delta(G) + 2$ and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \Box H) > \Delta(G \Box H) + 2$?

Open problems

Conjecture 20

Let G be a $(\Delta + 1)$ -graph and H be a $(\Delta + 2)$ -graph. Then,

 $\chi_i(G \Box H) \leq \Delta(G \Box H) + 2.$

Question 21

Do there exist graphs G and H with $\chi_i(G) = \Delta(G) + 2$ and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \Box H) > \Delta(G \Box H) + 2$?

Question 22

When is the Cartesian product of two $(\Delta + 1)$ -graphs also a $(\Delta + 1)$ -graph.

Thank you for your attention!