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joint work with

Petr Gregor2 & Roman Soták3

1Faculty of Information Studies, Novo mesto, Slovenia

2Charles University, Prague, Czech Republic
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Incidences

In a graph G , an incidence is a pair (v , e), where v ∈ V (G ),
e ∈ E (G ), and v is incident to e.

Two incidences (v , e) and (u, f ) are adjacent if:

(a) v = u, or
(b) e = f , or
(c) vu ∈ {e, f }.

v = u

e f

v

e = fu

u

e f
v
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Incidence coloring

A k-incidence coloring of a graph is any coloring of its
incidences, using k colors, such that adjacent incidences
receive distinct colors.

The smallest k for which a k-incidence coloring of a graph G
exists is called the incidence chromatic number of G , χi (G ).

Defined by Brualdi and Massey in 1993.

Related to other colorings, e.g. strong edge-coloring of fully
subdivided graphs.
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Spectrum

For an incidence coloring c , the spectrum of a vertex v ,
Sc(v), is the set of colors assigned to the incidences with the
edges containing v , i.e.

Sc(v) = {c(v , uv), c(u, uv) | uv ∈ E (G )}.
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Spectrum

S0
c (v) = {c(v , uv) | uv ∈ E (G )}

S1
c (v) = {c(u, uv) | uv ∈ E (G )}
|S0

c (v)| = d(v) and |S1
c (v)| ≥ 1

Spectrum gives a simple lower bound:

χi (G ) ≥ min
c

max
v∈V (G)

|Sc(v)| ≥ ∆(G ) + 1 .
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(∆ + 1)-graphs

A (∆ + 1)-graph is every graph G with

χi (G ) = ∆(G ) + 1 .

Complete graphs, trees, outerplanar graphs with ∆ ≥ 7,
planar graphs with ∆ ≥ 14,...

Theorem 1 (Sun, 2012)

If G is an n-regular graph, then χi (G ) = n + 1 if and only if V (G )
is a disjoint union of n + 1 (perfect) dominating sets.
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(∆ + 2)-conjecture

Conjecture 2 (Brualdi & Massey, 1993)

For every graph G
χi (G ) ≤ ∆(G ) + 2 .

Guilduli, 1997 - Conjecture is false

Paley graphs need ∆ + Ω(log ∆)

Theorem 3 (Guilduli, 1997)

For every graph G

χi (G ) ≤ ∆(G ) + 20 log(∆(G )) + 84 .
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(∆ + 2)-conjecture

Conjecture 2 holds for e.g.

subcubic graphs,
partial 2-trees (hence also outerplanar graphs),
toroidal grids,
planar graphs with girth at least 6 and maximum degree at
least 5,
complete bipartite graphs,
. . .



(∆ + 2)-conjecture

The graph G of smallest order being a counter example (Clark &
Dunning, 1997):
6-regular, 11 vertices, γ(G ) = 3, χi (G ) = 9



(∆ + 2)-conjecture

Theorem 4 (Maydanskiy, 2005)

χi (G ) ≥ 2|E (G )|
|V (G )| − γ(G )

.

So far, the only known graphs being counter-examples to the
conjecture are the ones having high domination number

Open for ∆(G ) ∈ {4, 5}.
Strong edge-coloring result gives χi (G ) ≤ 2∆(G ) (Nakprasit,
2008)



Subquartic graphs

Theorem 5 (Gregor, ·, Soták, 2016)

For every graph G with maximum degree 4,

χi (G ) ≤ 7 .

4-regular graphs on at most 14 vertices are (∆ + 2)-graphs;

[many 4-regular graphs on 15 vertices are (∆ + 2)-graphs] :)

Question 6

Is it true that 6 (resp. 7) colors suffice for incidence coloring of
graphs with maximum degree 4 (resp. 5)?
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Hypercubes

Theorem 7 (Pai et al., 2014)

For every integers p, q ≥ 1,

(i) χi (Qn) = n + 1, if n = 2p − 1;

(ii) χi (Qn) = n + 2, if n = 2p − 2 and p ≥ 2, or n = 2p + 2q − 1,
or n = 2p + 2q − 3 and p, q ≥ 2.

Our motivation:

Conjecture 8 (Pai et al., 2014)

For every n ≥ 1 such that n 6= 2p − 1 for every integer p ≥ 1,

χi (Qn) = n + 2 .
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Cartesian products

Observation. Let G and H be arbitrary graphs. Then

χi (G � H) ≤ χi (G ) + χi (H) .

Is it possible that Conjecture 2 holds for Cartesian products?

No.

Consider a Paley graph P and K2,

χi (P � K2) = ∆(P � K2) + Ω(log(P � K2)) .
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Cartesian products

-1 color



Cartesian products (−1 color)

Theorem 9 (Gregor, ·, Soták, 2016)

Let G be a (∆ + 1)-graph and let H be a subgraph of a regular
(∆ + 1)-graph H ′ such that

∆(G ) + 1 ≥ ∆(H ′)−∆(H).

Then,
χi (G � H) ≤ ∆(G � H) + 2 .



Hypercubes - revisited

Corollary 10 (Gregor, ·, Soták, 2016)

For every n ≥ 1,

χi (Qn) =

{
n + 1 if n = 2m − 1 for some integer m ≥ 0,

n + 2 otherwise.

The conjecture has also been solved independently by Shiau,
Shiau, Wang, 2015
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Cartesian products

-2 colors

Not today :(
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Open problems

Conjecture 11

Let G be a (∆ + 1)-graph and H be a (∆ + 2)-graph. Then,

χi (G � H) ≤ ∆(G � H) + 2 .

Question 12

Do there exist graphs G and H with χi (G ) = ∆(G ) + 2 and
χi (H) = ∆(H) + 2 such that χi (G � H) > ∆(G � H) + 2?

Question 13

When is the Cartesian product of two (∆ + 1)-graphs also a
(∆ + 1)-graph.
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Thank you for your attention!



Locally injective homomorphisms

A homomorphism f of G to H is a mapping

f : V (G )→ V (H)

such that if uv ∈ E (G ), then f (u)f (v) ∈ E (H).

A homomorphism f is locally injective if f (u) 6= f (v) for every
v ∈ V (G ) and every pair vu, vw ∈ E (G ).

f is injective on N(v), for every v ∈ V (G )

locally injective homomorphisms preserve adjacencies of
incidences



Locally injective homomorphisms

Theorem 14 (Duffy, 2015)

Let G and H be simple graphs such that G admits a locally
injective homomorphism to H. Then

χi (G ) ≤ χi (H) .

Proposition 15

A graph G admits a (k, 1)-incidence coloring iff it admits a locally
injective homomorphism to Kk .



2-permutable graphs

K−2n is a complete graph on 2n vertices without a perfect
matching

A connected 2d-regular graph G is 2-permutable if it admits a
locally injective homomorphism to K−2d+2.

So:

G is (2d + 2)-partite (with partition sets P1, . . . ,P2d+2);
For every i , 1 ≤ i ≤ 2d + 2, exists i such that there are no
edges between Pi and Pi ;
Every v ∈ Pi has at most one neighbor in Pj , j /∈ {i , i}.
Every 2-permutable graph is a (∆ + 2, 1)-graph.

There exist (∆ + 2, 1)-graphs which are not 2-permutable,
e.g. 7-cycle.
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2-permutable graphs

Examples: C4n and K−2n

Among 1544 4-regular graphs of order 12, there are 13
2-permutable graphs.
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Prisms over 2-permutable graphs

Theorem 16

Let G be a 2-permutable graph. Then

χi (G � K2) = ∆(G � K2) + 1 (= ∆(G ) + 2) .

The inverse of Theorem 16 does not hold in general.

The prism over the Dodecahedron is a (∆ + 1)-graph, while
the Dodecahedron is not 2-permutable (it is cubic).

The inverse holds for cycles.
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Sub-2-permutable graphs

A (non-regular) graph G is sub-2-permutable if it admits a
locally injective homomorphism to K−∆(G)+2.

Corollary 17

Let G be a sub-2-permutable graph. Then

χi (G � K2) = ∆(G � K2) + 1 .
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2-adjustable graphs

An incidence coloring of a graph G is adjustable if there exists
a pair of colors x and y such that there is no vertex v ∈ V (G )
with x , y ∈ S0(v).

x and y are called free colors.

A graph G is 2-adjustable if it admits an adjustable
(∆(G ) + 2)-incidence coloring.

Example: C5
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2-adjustable graphs - Examples

All (∆ + 1)-graphs (the color ∆(G ) + 2 is never used).

All (∆ + 1)-graphs together with a matching (two same colors
can be put on a matching; they are free)

Cycles, complete bipartite graphs, prisms over C6n
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2-adjustable graphs - Examples

By K̊n we denote the complete graph of order n with a loop at
one vertex.

Figure: A K̊5.



2-adjustable graphs - Examples

Proposition 18

If a graph G admits a locally injective homomorphism to K̊∆(G)+1,
then G is 2-adjustable.

The inverse statement is not true in general.

C5 is 2-adjustable, but does not admit a locally injective
homomorphism to K̊3.
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Cartesian products with −2 colors

Theorem 19

Let G be a sub-2-permutable graph and let H be a 2-adjustable
graph. Then

χi (G � H) ≤ ∆(G � H) + 2 .



Open problems

Conjecture 20

Let G be a (∆ + 1)-graph and H be a (∆ + 2)-graph. Then,

χi (G � H) ≤ ∆(G � H) + 2 .

Question 21

Do there exist graphs G and H with χi (G ) = ∆(G ) + 2 and
χi (H) = ∆(H) + 2 such that χi (G � H) > ∆(G � H) + 2?

Question 22

When is the Cartesian product of two (∆ + 1)-graphs also a
(∆ + 1)-graph.
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