On Incidence Colorings of Graphs

Borut Lužar ${ }^{1}$

joint work with

Petr Gregor ${ }^{2}$ \& Roman Soták ${ }^{3}$

${ }^{1}$ Faculty of Information Studies, Novo mesto, Slovenia
${ }^{2}$ Charles University, Prague, Czech Republic
${ }^{3}$ Pavol J. Šafárik University, Košice, Slovakia
$1^{\text {st }}$ CroCoDays - September 29, 2016

Graph Colorings

Vertices

Graph Colorings

Vertices

■ The Four Color Problem (Guthrie, 1852):
Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.

Graph Colorings

Vertices

- The Four Color Problem (Guthrie, 1852):

Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.

- The Four Color Theorem (Appel \& Haken, 1976)

Graph Colorings

Vertices

- The Four Color Problem (Guthrie, 1852):

Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.

- The Four Color Theorem (Appel \& Haken, 1976)

■ Brooks' Theorem

Graph Colorings

Vertices

■ The Four Color Problem (Guthrie, 1852):
Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.

- The Four Color Theorem (Appel \& Haken, 1976)

■ Brooks' Theorem
Edges

Graph Colorings

Vertices

- The Four Color Problem (Guthrie, 1852):

Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.

- The Four Color Theorem (Appel \& Haken, 1976)

■ Brooks' Theorem

Edges

■ Vizing, 1964
The edges of every simple graph G can be colored with at most $\Delta(G)+1$ colors such that incident edges are colored differently.

Chromatic graph theory

- Assigning colors to objects in graphs: vertices, edges, faces, any combination of these,...

Chromatic graph theory

- Assigning colors to objects in graphs: vertices, edges, faces, any combination of these,...
- Aim:
- objects in some relation are colored differently;
- minimum number of colors used;
- determination of graphs needing the most colors;

Chromatic graph theory

- Assigning colors to objects in graphs: vertices, edges, faces, any combination of these,...
- Aim:
- objects in some relation are colored differently;
- minimum number of colors used;
- determination of graphs needing the most colors;

■ Applicable (up to some level) in practice for solving optimization problems

Chromatic graph theory

■ Assigning colors to objects in graphs: vertices, edges, faces, any combination of these,...

- Aim:
- objects in some relation are colored differently;
- minimum number of colors used;
- determination of graphs needing the most colors;

■ Applicable (up to some level) in practice for solving optimization problems

- Most of coloring problems are NP-complete

Incidences

■ In a graph G, an incidence is a pair (v, e), where $v \in V(G)$, $e \in E(G)$, and v is incident to e.

- Two incidences (v, e) and (u, f) are adjacent if:

$$
\begin{aligned}
& \text { (a) } v=u \text {, or } \\
& \text { (b) } e=f, \text { or } \\
& \text { (c) } v u \in\{e, f\} \text {. }
\end{aligned}
$$

Incidence coloring

- A k-incidence coloring of a graph is any coloring of its incidences, using k colors, such that adjacent incidences receive distinct colors.

Incidence coloring

- A k-incidence coloring of a graph is any coloring of its incidences, using k colors, such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of $G, \chi_{i}(G)$.

Incidence coloring

- A k-incidence coloring of a graph is any coloring of its incidences, using k colors, such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of $G, \chi_{i}(G)$.
■ Defined by Brualdi and Massey in 1993.

Incidence coloring

- A k-incidence coloring of a graph is any coloring of its incidences, using k colors, such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of $G, \chi_{i}(G)$.
■ Defined by Brualdi and Massey in 1993.
- Related to other colorings, e.g. strong edge-coloring of fully subdivided graphs.

Example: C_{3}

Example: C_{3}

Example: C_{3}

Example: C_{3}

Example: C_{3}

Example: C_{3}

Example: C_{3}

Example: C_{3}

Example: C_{3}

[^0]Example：C_{3}

Example：C_{3}

Spectrum

- For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\} .
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\}
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\} .
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\}
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\} .
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\} .
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\}
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\} .
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\} .
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\} .
$$

Spectrum

■ For an incidence coloring c, the spectrum of a vertex v, $S_{c}(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$
S_{c}(v)=\{c(v, u v), c(u, u v) \mid u v \in E(G)\} .
$$

Spectrum

- $S_{c}^{0}(v)=\{c(v, u v) \mid u v \in E(G)\}$

Spectrum

- $S_{c}^{0}(v)=\{c(v, u v) \mid u v \in E(G)\}$
- $S_{c}^{1}(v)=\{c(u, u v) \mid u v \in E(G)\}$

Spectrum

- $S_{c}^{0}(v)=\{c(v, u v) \mid u v \in E(G)\}$
- $S_{c}^{1}(v)=\{c(u, u v) \mid u v \in E(G)\}$
- $\left|S_{c}^{0}(v)\right|=d(v)$ and $\left|S_{c}^{1}(v)\right| \geq 1$

Spectrum

- $S_{c}^{0}(v)=\{c(v, u v) \mid u v \in E(G)\}$
- $S_{c}^{1}(v)=\{c(u, u v) \mid u v \in E(G)\}$
- $\left|S_{c}^{0}(v)\right|=d(v)$ and $\left|S_{c}^{1}(v)\right| \geq 1$
- Spectrum gives a simple lower bound:

$$
\chi_{i}(G) \geq \min _{c} \max _{v \in V(G)}\left|S_{c}(v)\right| \geq \Delta(G)+1
$$

$(\Delta+1)$-graphs

- A $(\Delta+1)$-graph is every graph G with

$$
\chi_{i}(G)=\Delta(G)+1
$$

- Complete graphs, trees, outerplanar graphs with $\Delta \geq 7$, planar graphs with $\Delta \geq 14, \ldots$

$(\Delta+1)$-graphs

- A $(\Delta+1)$-graph is every graph G with

$$
\chi_{i}(G)=\Delta(G)+1
$$

■ Complete graphs, trees, outerplanar graphs with $\Delta \geq 7$, planar graphs with $\Delta \geq 14, \ldots$

Theorem 1 (Sun, 2012)

If G is an n-regular graph, then $\chi_{i}(G)=n+1$ if and only if $V(G)$ is a disjoint union of $n+1$ (perfect) dominating sets.

$(\Delta+2)$-conjecture

Conjecture 2 (Brualdi \& Massey, 1993)
For every graph G

$$
\chi_{i}(G) \leq \Delta(G)+2 .
$$

$(\Delta+2)$-conjecture

Conjecture 2 (Brualdi \& Massey, 1993)
For every graph G

$$
\chi_{i}(G) \leq \Delta(G)+2 .
$$

- Guilduli, 1997 - Conjecture is false
- Paley graphs need $\Delta+\Omega(\log \Delta)$

$(\Delta+2)$-conjecture

Conjecture 2 (Brualdi \& Massey, 1993)
For every graph G

$$
\chi_{i}(G) \leq \Delta(G)+2 .
$$

- Guilduli, 1997 - Conjecture is false
- Paley graphs need $\Delta+\Omega(\log \Delta)$

Theorem 3 (Guilduli, 1997)

For every graph G

$$
\chi_{i}(G) \leq \Delta(G)+20 \log (\Delta(G))+84
$$

$(\Delta+2)$-conjecture

- Conjecture 2 holds for e.g.
- subcubic graphs,
- partial 2-trees (hence also outerplanar graphs),
- toroidal grids,
- planar graphs with girth at least 6 and maximum degree at least 5,
- complete bipartite graphs,

$(\Delta+2)$-conjecture

The graph G of smallest order being a counter example (Clark \& Dunning, 1997):
6 -regular, 11 vertices, $\gamma(G)=3, \chi_{i}(G)=9$

$(\Delta+2)$-conjecture

Theorem 4 (Maydanskiy, 2005)

$$
\chi_{i}(G) \geq \frac{2|E(G)|}{|V(G)|-\gamma(G)}
$$

- So far, the only known graphs being counter-examples to the conjecture are the ones having high domination number
- Open for $\Delta(G) \in\{4,5\}$.
- Strong edge-coloring result gives $\chi_{i}(G) \leq 2 \Delta(G)$ (Nakprasit, 2008)

Subquartic graphs

Theorem 5 (Gregor, •, Soták, 2016)

For every graph G with maximum degree 4,

$$
\chi_{i}(G) \leq 7 .
$$

Subquartic graphs

Theorem 5 (Gregor, •, Soták, 2016)

For every graph G with maximum degree 4,

$$
\chi_{i}(G) \leq 7
$$

- 4-regular graphs on at most 14 vertices are $(\Delta+2)$-graphs;

■ [many 4-regular graphs on 15 vertices are ($\Delta+2$)-graphs] :)

Subquartic graphs

Theorem 5 (Gregor, •, Soták, 2016)

For every graph G with maximum degree 4,

$$
\chi_{i}(G) \leq 7 .
$$

- 4-regular graphs on at most 14 vertices are $(\Delta+2)$-graphs;

■ [many 4-regular graphs on 15 vertices are ($\Delta+2$)-graphs] :)

Question 6

Is it true that 6 (resp. 7) colors suffice for incidence coloring of graphs with maximum degree 4 (resp. 5)?

Hypercubes

Theorem 7 (Pai et al., 2014)

For every integers $p, q \geq 1$,
(i) $\chi_{i}\left(Q_{n}\right)=n+1$, if $n=2^{p}-1$;
(ii) $\chi_{i}\left(Q_{n}\right)=n+2$, if $n=2^{p}-2$ and $p \geq 2$, or $n=2^{p}+2^{q}-1$, or $n=2^{p}+2^{q}-3$ and $p, q \geq 2$.

Hypercubes

Theorem 7 (Pai et al., 2014)

For every integers $p, q \geq 1$,
(i) $\chi_{i}\left(Q_{n}\right)=n+1$, if $n=2^{p}-1$;
(ii) $\chi_{i}\left(Q_{n}\right)=n+2$, if $n=2^{p}-2$ and $p \geq 2$, or $n=2^{p}+2^{q}-1$, or $n=2^{p}+2^{q}-3$ and $p, q \geq 2$.

Our motivation:

Conjecture 8 (Pai et al., 2014)

For every $n \geq 1$ such that $n \neq 2^{p}-1$ for every integer $p \geq 1$,

$$
\chi_{i}\left(Q_{n}\right)=n+2 .
$$

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$
\chi_{i}(G \square H) \leq \chi_{i}(G)+\chi_{i}(H)
$$

- Is it possible that Conjecture 2 holds for Cartesian products?

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$
\chi_{i}(G \square H) \leq \chi_{i}(G)+\chi_{i}(H)
$$

- Is it possible that Conjecture 2 holds for Cartesian products?
- No.

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$
\chi_{i}(G \square H) \leq \chi_{i}(G)+\chi_{i}(H)
$$

- Is it possible that Conjecture 2 holds for Cartesian products?
- No.
- Consider a Paley graph P and K_{2},

$$
\chi_{i}\left(P \square K_{2}\right)=\Delta\left(P \square K_{2}\right)+\Omega\left(\log \left(P \square K_{2}\right)\right) .
$$

Cartesian products -1 color

Cartesian products (-1 color)

Theorem 9 (Gregor, •, Soták, 2016)

Let G be a $(\Delta+1)$-graph and let H be a subgraph of a regular $(\Delta+1)$-graph H^{\prime} such that

$$
\Delta(G)+1 \geq \Delta\left(H^{\prime}\right)-\Delta(H)
$$

Then,

$$
\chi_{i}(G \square H) \leq \Delta(G \square H)+2 .
$$

Hypercubes - revisited

Corollary 10 (Gregor, •, Soták, 2016)
For every $n \geq 1$,

$$
\chi_{i}\left(Q_{n}\right)= \begin{cases}n+1 & \text { if } n=2^{m}-1 \text { for some integer } m \geq 0 \\ n+2 & \text { otherwise }\end{cases}
$$

Hypercubes - revisited

Corollary 10 (Gregor, •, Soták, 2016)
For every $n \geq 1$,

$$
\chi_{i}\left(Q_{n}\right)= \begin{cases}n+1 & \text { if } n=2^{m}-1 \text { for some integer } m \geq 0 \\ n+2 & \text { otherwise }\end{cases}
$$

The conjecture has also been solved independently by Shiau, Shiau, Wang, 2015

Cartesian products
 -2 colors

Cartesian products -2 colors

Not today :(

Open problems

Conjecture 11

Let G be a $(\Delta+1)$-graph and H be a $(\Delta+2)$-graph. Then,

$$
\chi_{i}(G \square H) \leq \Delta(G \square H)+2 .
$$

Open problems

Conjecture 11

Let G be a $(\Delta+1)$-graph and H be a $(\Delta+2)$-graph. Then,

$$
\chi_{i}(G \square H) \leq \Delta(G \square H)+2 .
$$

Question 12

Do there exist graphs G and H with $\chi_{i}(G)=\Delta(G)+2$ and $\chi_{i}(H)=\Delta(H)+2$ such that $\chi_{i}(G \square H)>\Delta(G \square H)+2$?

Open problems

Conjecture 11

Let G be a $(\Delta+1)$-graph and H be a $(\Delta+2)$-graph. Then,

$$
\chi_{i}(G \square H) \leq \Delta(G \square H)+2 .
$$

Question 12

Do there exist graphs G and H with $\chi_{i}(G)=\Delta(G)+2$ and $\chi_{i}(H)=\Delta(H)+2$ such that $\chi_{i}(G \square H)>\Delta(G \square H)+2$?

Question 13

When is the Cartesian product of two $(\Delta+1)$-graphs also a ($\Delta+1$)-graph.

Thank you for your attention!

Locally injective homomorphisms

- A homomorphism f of G to H is a mapping

$$
f: V(G) \rightarrow V(H)
$$

such that if $u v \in E(G)$, then $f(u) f(v) \in E(H)$.

- A homomorphism f is locally injective if $f(u) \neq f(v)$ for every $v \in V(G)$ and every pair $v u, v w \in E(G)$.
- f is injective on $N(v)$, for every $v \in V(G)$
- locally injective homomorphisms preserve adjacencies of incidences

Locally injective homomorphisms

Theorem 14 (Duffy, 2015)

Let G and H be simple graphs such that G admits a locally injective homomorphism to H. Then

$$
\chi_{i}(G) \leq \chi_{i}(H)
$$

Proposition 15

A graph G admits a ($k, 1$)-incidence coloring iff it admits a locally injective homomorphism to K_{k}.

2-permutable graphs

- $K_{2 n}^{-}$is a complete graph on $2 n$ vertices without a perfect matching
- A connected $2 d$-regular graph G is 2 -permutable if it admits a locally injective homomorphism to $K_{2 d+2}^{-}$.

2-permutable graphs

- $K_{2 n}^{-}$is a complete graph on $2 n$ vertices without a perfect matching
- A connected $2 d$-regular graph G is 2 -permutable if it admits a locally injective homomorphism to $K_{2 d+2}^{-}$.
- So:

■ G is $(2 d+2)$-partite (with partition sets $\left.P_{1}, \ldots, P_{2 d+2}\right)$;
■ For every $i, 1 \leq i \leq 2 d+2$, exists \bar{i} such that there are no edges between P_{i} and $P_{\bar{i}}$;
■ Every $v \in P_{i}$ has at most one neighbor in $P_{j}, j \notin\{i, \bar{i}\}$.
■ Every 2 -permutable graph is a $(\Delta+2,1)$-graph.

2-permutable graphs

- $K_{2 n}^{-}$is a complete graph on $2 n$ vertices without a perfect matching
- A connected $2 d$-regular graph G is 2 -permutable if it admits a locally injective homomorphism to $K_{2 d+2}^{-}$.
- So:
- G is $(2 d+2)$-partite (with partition sets $P_{1}, \ldots, P_{2 d+2}$);
- For every $i, 1 \leq i \leq 2 d+2$, exists \bar{i} such that there are no edges between P_{i} and $P_{\bar{i}}$;
- Every $v \in P_{i}$ has at most one neighbor in $P_{j}, j \notin\{i, \bar{i}\}$.
- Every 2 -permutable graph is a $(\Delta+2,1)$-graph.
- There exist $(\Delta+2,1)$-graphs which are not 2-permutable, e.g. 7-cycle.

2-permutable graphs

Examples: $C_{4 n}$ and $K_{2 n}^{-}$

2-permutable graphs

Examples: $C_{4 n}$ and $K_{2 n}^{-}$

- Among 1544 4-regular graphs of order 12, there are 13 2-permutable graphs.

Prisms over 2-permutable graphs

Theorem 16

Let G be a 2-permutable graph. Then

$$
\chi_{i}\left(G \square K_{2}\right)=\Delta\left(G \square K_{2}\right)+1(=\Delta(G)+2)
$$

Prisms over 2-permutable graphs

Theorem 16

Let G be a 2-permutable graph. Then

$$
\chi_{i}\left(G \square K_{2}\right)=\Delta\left(G \square K_{2}\right)+1(=\Delta(G)+2)
$$

- The inverse of Theorem 16 does not hold in general.

Prisms over 2-permutable graphs

Theorem 16

Let G be a 2-permutable graph. Then

$$
\chi_{i}\left(G \square K_{2}\right)=\Delta\left(G \square K_{2}\right)+1(=\Delta(G)+2)
$$

- The inverse of Theorem 16 does not hold in general.
- The prism over the Dodecahedron is a $(\Delta+1)$-graph, while the Dodecahedron is not 2-permutable (it is cubic).

Prisms over 2-permutable graphs

Theorem 16

Let G be a 2-permutable graph. Then

$$
\chi_{i}\left(G \square K_{2}\right)=\Delta\left(G \square K_{2}\right)+1(=\Delta(G)+2)
$$

- The inverse of Theorem 16 does not hold in general.
- The prism over the Dodecahedron is a ($\Delta+1$)-graph, while the Dodecahedron is not 2-permutable (it is cubic).
- The inverse holds for cycles.

Sub-2-permutable graphs

- A (non-regular) graph G is sub-2-permutable if it admits a locally injective homomorphism to $K_{\Delta(G)+2}^{-}$.

Sub-2-permutable graphs

- A (non-regular) graph G is sub-2-permutable if it admits a locally injective homomorphism to $K_{\Delta(G)+2}^{-}$.

Corollary 17

Let G be a sub-2-permutable graph. Then

$$
\chi_{i}\left(G \square K_{2}\right)=\Delta\left(G \square K_{2}\right)+1
$$

2-adjustable graphs

- An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_{0}(v)$.
- x and y are called free colors.

2-adjustable graphs

- An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_{0}(v)$.
- x and y are called free colors.
- A graph G is 2-adjustable if it admits an adjustable $(\Delta(G)+2)$-incidence coloring.

2-adjustable graphs

- An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_{0}(v)$.
- x and y are called free colors.
- A graph G is 2-adjustable if it admits an adjustable $(\Delta(G)+2)$-incidence coloring.
- Example: C_{5}

2-adjustable graphs - Examples

■ All $(\Delta+1)$-graphs (the color $\Delta(G)+2$ is never used).

2-adjustable graphs - Examples

■ All $(\Delta+1)$-graphs (the color $\Delta(G)+2$ is never used).

- All $(\Delta+1)$-graphs together with a matching (two same colors can be put on a matching; they are free)

2-adjustable graphs - Examples

- All $(\Delta+1)$-graphs (the color $\Delta(G)+2$ is never used).
- All $(\Delta+1)$-graphs together with a matching (two same colors can be put on a matching; they are free)
■ Cycles, complete bipartite graphs, prisms over $C_{6 n}$

2-adjustable graphs - Examples

- By $\stackrel{\circ}{K}_{n}$ we denote the complete graph of order n with a loop at one vertex.

Figure: A $\stackrel{\circ}{K}_{5}$.

2-adjustable graphs - Examples

Proposition 18

If a graph G admits a locally injective homomorphism to ${\stackrel{\circ}{K_{\Delta(G)+1}}}$, then G is 2-adjustable.

2-adjustable graphs - Examples

Proposition 18

If a graph G admits a locally injective homomorphism to ${\stackrel{\circ}{K_{\Delta(G)+1}}}$, then G is 2-adjustable.

- The inverse statement is not true in general.
- C_{5} is 2 -adjustable, but does not admit a locally injective homomorphism to \check{K}_{3}.

Cartesian products with -2 colors

Theorem 19

Let G be a sub-2-permutable graph and let H be a 2-adjustable graph. Then

$$
\chi_{i}(G \square H) \leq \Delta(G \square H)+2 .
$$

Open problems

Conjecture 20

Let G be a $(\Delta+1)$-graph and H be a $(\Delta+2)$-graph. Then,

$$
\chi_{i}(G \square H) \leq \Delta(G \square H)+2 .
$$

Open problems

Conjecture 20

Let G be a $(\Delta+1)$-graph and H be a $(\Delta+2)$-graph. Then,

$$
\chi_{i}(G \square H) \leq \Delta(G \square H)+2 .
$$

Question 21

Do there exist graphs G and H with $\chi_{i}(G)=\Delta(G)+2$ and $\chi_{i}(H)=\Delta(H)+2$ such that $\chi_{i}(G \square H)>\Delta(G \square H)+2$?

Open problems

Conjecture 20

Let G be a $(\Delta+1)$-graph and H be a $(\Delta+2)$-graph. Then,

$$
\chi_{i}(G \square H) \leq \Delta(G \square H)+2 .
$$

Question 21

Do there exist graphs G and H with $\chi_{i}(G)=\Delta(G)+2$ and $\chi_{i}(H)=\Delta(H)+2$ such that $\chi_{i}(G \square H)>\Delta(G \square H)+2$?

Question 22

When is the Cartesian product of two $(\Delta+1)$-graphs also a ($\Delta+1$)-graph.

Thank you for your attention!

[^0]:

