On Incidence Colorings of Graphs

Borut Lužar¹

joint work with

Petr Gregor² & Roman Soták³

¹Faculty of Information Studies, Novo mesto, Slovenia

²Charles University, Prague, Czech Republic

³Pavol J. Šafárik University, Košice, Slovakia

1st CroCoDays – September 29, 2016

Vertices

Vertices

■ The Four Color Problem (Guthrie, 1852): Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.

Vertices

- The Four Color Problem (Guthrie, 1852): Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.
- The Four Color Theorem (Appel & Haken, 1976)

Vertices

- The Four Color Problem (Guthrie, 1852): Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.
- The Four Color Theorem (Appel & Haken, 1976)
- Brooks' Theorem

Vertices

- The Four Color Problem (Guthrie, 1852): Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.
- The Four Color Theorem (Appel & Haken, 1976)
- Brooks' Theorem

Edges

Vertices

- The Four Color Problem (Guthrie, 1852): Regions of every map can be colored with at most four colors such that every pair of regions with a common border is colored differently.
- The Four Color Theorem (Appel & Haken, 1976)
- Brooks' Theorem

Edges

■ Vizing, 1964
The edges of every simple graph G can be colored with at most $\Delta(G) + 1$ colors such that incident edges are colored differently.

Assigning colors to objects in graphs: vertices, edges, faces, any combination of these,...

- Assigning colors to objects in graphs: vertices, edges, faces, any combination of these,...
- Aim:
 - objects in some relation are colored differently;
 - minimum number of colors used;
 - determination of graphs needing the most colors;
 - **...**

- Assigning colors to objects in graphs: vertices, edges, faces, any combination of these,...
- Aim:
 - objects in some relation are colored differently;
 - minimum number of colors used;
 - determination of graphs needing the most colors;
 - **.** . . .
- Applicable (up to some level) in practice for solving optimization problems

- Assigning colors to objects in graphs: vertices, edges, faces, any combination of these,...
- Aim:
 - objects in some relation are colored differently;
 - minimum number of colors used;
 - determination of graphs needing the most colors;
 - **.** . . .
- Applicable (up to some level) in practice for solving optimization problems
- Most of coloring problems are NP-complete

Incidences

- In a graph G, an incidence is a pair (v, e), where $v \in V(G)$, $e \in E(G)$, and v is incident to e.
- Two incidences (v, e) and (u, f) are adjacent if:
 - (a) v = u, or
 - (b) e = f, or
 - (c) $vu \in \{e, f\}.$

■ A *k*-incidence coloring of a graph is any coloring of its incidences, using *k* colors, such that adjacent incidences receive distinct colors.

- A *k*-incidence coloring of a graph is any coloring of its incidences, using *k* colors, such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, $\chi_i(G)$.

- A *k*-incidence coloring of a graph is any coloring of its incidences, using *k* colors, such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, $\chi_i(G)$.
- Defined by Brualdi and Massey in 1993.

- A *k*-incidence coloring of a graph is any coloring of its incidences, using *k* colors, such that adjacent incidences receive distinct colors.
- The smallest k for which a k-incidence coloring of a graph G exists is called the incidence chromatic number of G, $\chi_i(G)$.
- Defined by Brualdi and Massey in 1993.
- Related to other colorings, e.g. strong edge-coloring of fully subdivided graphs.

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

■ For an incidence coloring c, the spectrum of a vertex v, $S_c(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

■ For an incidence coloring c, the spectrum of a vertex v, $S_c(v)$, is the set of colors assigned to the incidences with the edges containing v, i.e.

$$S_c(v) = \{c(v, uv), c(u, uv) \mid uv \in E(G)\}.$$

•
$$S_c^0(v) = \{c(v, uv) \mid uv \in E(G)\}$$

$$S_c^0(v) = \{c(v, uv) \mid uv \in E(G)\}$$

•
$$S_c^1(v) = \{c(u, uv) \mid uv \in E(G)\}$$

$$S_c^0(v) = \{c(v, uv) \mid uv \in E(G)\}$$

•
$$S_c^1(v) = \{c(u, uv) \mid uv \in E(G)\}$$

$$ullet$$
 $|S_c^0(v)|=d(v)$ and $|S_c^1(v)|\geq 1$

- $S_c^0(v) = \{c(v, uv) \mid uv \in E(G)\}$
- $S_c^1(v) = \{c(u, uv) \mid uv \in E(G)\}$
- lacksquare $|S_c^0(v)| = d(v)$ and $|S_c^1(v)| \ge 1$
- Spectrum gives a simple lower bound:

$$\chi_i(G) \ge \min_{c} \max_{v \in V(G)} |S_c(v)| \ge \Delta(G) + 1.$$

$(\Delta + 1)$ -graphs

■ A $(\Delta + 1)$ -graph is every graph G with

$$\chi_i(G) = \Delta(G) + 1$$
.

■ Complete graphs, trees, outerplanar graphs with $\Delta \geq 7$, planar graphs with $\Delta \geq 14,...$

$(\Delta + 1)$ -graphs

■ A $(\Delta + 1)$ -graph is every graph G with

$$\chi_i(G) = \Delta(G) + 1.$$

■ Complete graphs, trees, outerplanar graphs with $\Delta \geq 7$, planar graphs with $\Delta \geq 14,...$

Theorem 1 (Sun, 2012)

If G is an n-regular graph, then $\chi_i(G) = n + 1$ if and only if V(G) is a disjoint union of n + 1 (perfect) dominating sets.

Conjecture 2 (Brualdi & Massey, 1993)

For every graph G

$$\chi_i(G) \leq \Delta(G) + 2$$
.

Conjecture 2 (Brualdi & Massey, 1993)

For every graph G

$$\chi_i(G) \leq \Delta(G) + 2$$
.

- Guilduli, 1997 Conjecture is false
- Paley graphs need $\Delta + \Omega(\log \Delta)$

Conjecture 2 (Brualdi & Massey, 1993)

For every graph G

$$\chi_i(G) \leq \Delta(G) + 2$$
.

- Guilduli, 1997 Conjecture is false
- Paley graphs need $\Delta + \Omega(\log \Delta)$

Theorem 3 (Guilduli, 1997)

For every graph G

$$\chi_i(G) \leq \Delta(G) + 20 \log(\Delta(G)) + 84$$
.

- Conjecture 2 holds for e.g.
 - subcubic graphs,
 - partial 2-trees (hence also outerplanar graphs),
 - toroidal grids,
 - planar graphs with girth at least 6 and maximum degree at least 5,
 - complete bipartite graphs,
 -

$\overline{(\Delta + 2)}$ -conjecture

The graph G of smallest order being a counter example (Clark & Dunning, 1997):

6-regular, 11 vertices, $\gamma(G) = 3$, $\chi_i(G) = 9$

Theorem 4 (Maydanskiy, 2005)

$$\chi_i(G) \geq \frac{2|E(G)|}{|V(G)| - \gamma(G)}$$
.

- So far, the only known graphs being counter-examples to the conjecture are the ones having high domination number
- Open for $\Delta(G) \in \{4, 5\}$.
- Strong edge-coloring result gives $\chi_i(G) \leq 2\Delta(G)$ (Nakprasit, 2008)

Subquartic graphs

Theorem 5 (Gregor, ·, Soták, 2016)

For every graph G with maximum degree 4,

$$\chi_i(G) \leq 7$$
.

Subquartic graphs

Theorem 5 (Gregor, ·, Soták, 2016)

For every graph G with maximum degree 4,

$$\chi_i(G) \leq 7$$
.

- 4-regular graphs on at most 14 vertices are $(\Delta + 2)$ -graphs;
- lacktriangle [many 4-regular graphs on 15 vertices are $(\Delta+2)$ -graphs] :)

Subquartic graphs

Theorem 5 (Gregor, ·, Soták, 2016)

For every graph G with maximum degree 4,

$$\chi_i(G) \leq 7$$
.

- 4-regular graphs on at most 14 vertices are $(\Delta + 2)$ -graphs;
- lacktriangle [many 4-regular graphs on 15 vertices are $(\Delta+2)$ -graphs] :)

Question 6

Is it true that 6 (resp. 7) colors suffice for incidence coloring of graphs with maximum degree 4 (resp. 5)?

Hypercubes

Theorem 7 (Pai et al., 2014)

For every integers $p, q \ge 1$,

- (i) $\chi_i(Q_n) = n+1$, if $n = 2^p 1$;
- (ii) $\chi_i(Q_n) = n+2$, if $n = 2^p 2$ and $p \ge 2$, or $n = 2^p + 2^q 1$, or $n = 2^p + 2^q 3$ and $p, q \ge 2$.

Hypercubes

Theorem 7 (Pai et al., 2014)

For every integers $p, q \ge 1$,

- (i) $\chi_i(Q_n) = n+1$, if $n = 2^p 1$;
- (ii) $\chi_i(Q_n) = n+2$, if $n = 2^p 2$ and $p \ge 2$, or $n = 2^p + 2^q 1$, or $n = 2^p + 2^q 3$ and $p, q \ge 2$.

Our motivation:

Conjecture 8 (Pai et al., 2014)

For every $n \ge 1$ such that $n \ne 2^p - 1$ for every integer $p \ge 1$,

$$\chi_i(Q_n)=n+2.$$

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$\chi_i(G \square H) \leq \chi_i(G) + \chi_i(H)$$
.

Is it possible that Conjecture 2 holds for Cartesian products?

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$\chi_i(G \square H) \leq \chi_i(G) + \chi_i(H)$$
.

- Is it possible that Conjecture 2 holds for Cartesian products?
- No.

Cartesian products

Observation. Let G and H be arbitrary graphs. Then

$$\chi_i(G \square H) \leq \chi_i(G) + \chi_i(H)$$
.

- Is it possible that Conjecture 2 holds for Cartesian products?
- No.
- Consider a Paley graph P and K_2 ,

$$\chi_i(P \square K_2) = \Delta(P \square K_2) + \Omega(\log(P \square K_2)).$$

Cartesian products -1 color

Cartesian products (-1 color)

Theorem 9 (Gregor, ·, Soták, 2016)

Let G be a $(\Delta+1)$ -graph and let H be a subgraph of a regular $(\Delta+1)$ -graph H' such that

$$\Delta(G) + 1 \ge \Delta(H') - \Delta(H).$$

Then,

$$\chi_i(G \square H) \leq \Delta(G \square H) + 2.$$

Hypercubes - revisited

Corollary 10 (Gregor, ·, Soták, 2016)

For every $n \ge 1$,

$$\chi_i(Q_n) = \begin{cases} n+1 & \text{if } n=2^m-1 \text{ for some integer } m \geq 0, \\ n+2 & \text{otherwise.} \end{cases}$$

Hypercubes - revisited

Corollary 10 (Gregor, ·, Soták, 2016)

For every $n \ge 1$,

$$\chi_i(Q_n) = \begin{cases} n+1 & \text{if } n=2^m-1 \text{ for some integer } m \geq 0, \\ n+2 & \text{otherwise.} \end{cases}$$

The conjecture has also been solved independently by Shiau, Shiau, Wang, 2015

Cartesian products -2 colors

Cartesian products -2 colors

Not today :(

Open problems

Conjecture 11

Let G be a
$$(\Delta+1)$$
-graph and H be a $(\Delta+2)$ -graph. Then,

$$\chi_i(G \square H) \leq \Delta(G \square H) + 2.$$

Open problems

Conjecture 11

Let G be a $(\Delta+1)$ -graph and H be a $(\Delta+2)$ -graph. Then, $\chi_i(G \ \square \ H) \leq \Delta(G \ \square \ H) + 2 \, .$

Question 12

Do there exist graphs G and H with $\chi_i(G) = \Delta(G) + 2$ and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \square H) > \Delta(G \square H) + 2$?

Open problems

Conjecture 11

Let G be a $(\Delta+1)$ -graph and H be a $(\Delta+2)$ -graph. Then, $\chi_i(G \square H) \leq \Delta(G \square H) + 2.$

Question 12

Do there exist graphs G and H with $\chi_i(G) = \Delta(G) + 2$ and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \square H) > \Delta(G \square H) + 2$?

Question 13

When is the Cartesian product of two $(\Delta + 1)$ -graphs also a $(\Delta + 1)$ -graph.

Thank you for your attention!

Locally injective homomorphisms

 \blacksquare A homomorphism f of G to H is a mapping

$$f: V(G) \rightarrow V(H)$$

such that if $uv \in E(G)$, then $f(u)f(v) \in E(H)$.

- A homomorphism f is locally injective if $f(u) \neq f(v)$ for every $v \in V(G)$ and every pair $vu, vw \in E(G)$.
- f is injective on N(v), for every $v \in V(G)$
- locally injective homomorphisms preserve adjacencies of incidences

Locally injective homomorphisms

Theorem 14 (Duffy, 2015)

Let G and H be simple graphs such that G admits a locally injective homomorphism to H. Then

$$\chi_i(G) \leq \chi_i(H)$$
.

Proposition 15

A graph G admits a (k,1)-incidence coloring iff it admits a locally injective homomorphism to K_k .

2-permutable graphs

- K_{2n}^- is a complete graph on 2n vertices without a perfect matching
- A connected 2d-regular graph G is 2-permutable if it admits a locally injective homomorphism to K_{2d+2}^- .

2-permutable graphs

- K_{2n}^- is a complete graph on 2n vertices without a perfect matching
- A connected 2d-regular graph G is 2-permutable if it admits a locally injective homomorphism to K_{2d+2}^- .
- So:
 - G is (2d+2)-partite (with partition sets P_1, \ldots, P_{2d+2});
 - For every i, $1 \le i \le 2d + 2$, exists \bar{i} such that there are no edges between P_i and $P_{\bar{i}}$;
 - Every $v \in P_i$ has at most one neighbor in P_j , $j \notin \{i, \bar{i}\}$.
 - Every 2-permutable graph is a $(\Delta + 2, 1)$ -graph.

2-permutable graphs

- K_{2n}^- is a complete graph on 2n vertices without a perfect matching
- A connected 2d-regular graph G is 2-permutable if it admits a locally injective homomorphism to K_{2d+2}^- .
- So:
 - G is (2d+2)-partite (with partition sets P_1, \ldots, P_{2d+2});
 - For every i, $1 \le i \le 2d + 2$, exists \overline{i} such that there are no edges between P_i and $P_{\overline{i}}$;
 - Every $v \in P_i$ has at most one neighbor in P_j , $j \notin \{i, \bar{i}\}$.
 - Every 2-permutable graph is a $(\Delta + 2, 1)$ -graph.
- There exist $(\Delta + 2, 1)$ -graphs which are not 2-permutable, e.g. 7-cycle.

2-permutable graphs

Examples: C_{4n} and K_{2n}^-

2-permutable graphs

Examples: C_{4n} and K_{2n}^-

Among 1544 4-regular graphs of order 12, there are 13
 2-permutable graphs.

Theorem 16

Let G be a 2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1 \ (= \Delta(G) + 2).$$

Theorem 16

Let G be a 2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1 \ (= \Delta(G) + 2).$$

■ The inverse of Theorem 16 does not hold in general.

Theorem 16

Let G be a 2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1 (= \Delta(G) + 2).$$

- The inverse of Theorem 16 does not hold in general.
- The prism over the Dodecahedron is a $(\Delta + 1)$ -graph, while the Dodecahedron is not 2-permutable (it is cubic).

Theorem 16

Let G be a 2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1 (= \Delta(G) + 2).$$

- The inverse of Theorem 16 does not hold in general.
- The prism over the Dodecahedron is a $(\Delta + 1)$ -graph, while the Dodecahedron is not 2-permutable (it is cubic).
- The inverse holds for cycles.

Sub-2-permutable graphs

■ A (non-regular) graph G is sub-2-permutable if it admits a locally injective homomorphism to $K_{\Delta(G)+2}^-$.

Sub-2-permutable graphs

■ A (non-regular) graph G is sub-2-permutable if it admits a locally injective homomorphism to $K_{\Delta(G)+2}^-$.

Corollary 17

Let G be a sub-2-permutable graph. Then

$$\chi_i(G \square K_2) = \Delta(G \square K_2) + 1.$$

2-adjustable graphs

- An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_0(v)$.
- x and y are called free colors.

2-adjustable graphs

- An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_0(v)$.
- x and y are called free colors.
- A graph G is 2-adjustable if it admits an adjustable $(\Delta(G) + 2)$ -incidence coloring.

2-adjustable graphs

- An incidence coloring of a graph G is adjustable if there exists a pair of colors x and y such that there is no vertex $v \in V(G)$ with $x, y \in S_0(v)$.
- x and y are called free colors.
- A graph G is 2-adjustable if it admits an adjustable $(\Delta(G) + 2)$ -incidence coloring.
- **Example:** C_5

■ All $(\Delta + 1)$ -graphs (the color $\Delta(G) + 2$ is never used).

- All $(\Delta + 1)$ -graphs (the color $\Delta(G) + 2$ is never used).
- lacktriangle All $(\Delta+1)$ -graphs together with a matching (two same colors can be put on a matching; they are free)

- All $(\Delta + 1)$ -graphs (the color $\Delta(G) + 2$ is never used).
- All $(\Delta + 1)$ -graphs together with a matching (two same colors can be put on a matching; they are free)
- Cycles, complete bipartite graphs, prisms over C_{6n}

■ By \mathring{K}_n we denote the complete graph of order n with a loop at one vertex.

Figure: A \mathring{K}_5 .

Proposition 18

If a graph G admits a locally injective homomorphism to $\mathring{K}_{\Delta(G)+1}$, then G is 2-adjustable.

Proposition 18

If a graph G admits a locally injective homomorphism to $\mathring{K}_{\Delta(G)+1}$, then G is 2-adjustable.

- The inverse statement is not true in general.
- C_5 is 2-adjustable, but does not admit a locally injective homomorphism to \mathring{K}_3 .

Cartesian products with -2 colors

Theorem 19

Let G be a sub-2-permutable graph and let H be a 2-adjustable graph. Then

$$\chi_i(G \square H) \leq \Delta(G \square H) + 2.$$

Open problems

Conjecture 20

Let G be a
$$(\Delta+1)$$
-graph and H be a $(\Delta+2)$ -graph. Then,

$$\chi_i(G \square H) \leq \Delta(G \square H) + 2.$$

Open problems

Conjecture 20

Let G be a $(\Delta+1)$ -graph and H be a $(\Delta+2)$ -graph. Then, $\chi_i(G \square H) \leq \Delta(G \square H) + 2 \, .$

Question 21

Do there exist graphs G and H with
$$\chi_i(G) = \Delta(G) + 2$$
 and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \square H) > \Delta(G \square H) + 2$?

Open problems

Conjecture 20

Let G be a $(\Delta+1)$ -graph and H be a $(\Delta+2)$ -graph. Then, $\chi_i(G \square H) \leq \Delta(G \square H) + 2.$

Question 21

Do there exist graphs G and H with $\chi_i(G) = \Delta(G) + 2$ and $\chi_i(H) = \Delta(H) + 2$ such that $\chi_i(G \square H) > \Delta(G \square H) + 2$?

Question 22

When is the Cartesian product of two $(\Delta + 1)$ -graphs also a $(\Delta + 1)$ -graph.

Thank you for your attention!