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Basics

A graph G is locally irregular if every two adjacent vertices

have distinct degrees.

An edge-coloring is locally irregular if every color class induces

a locally irregular graph.

Always improper�paths of odd length do not admit such a

coloring

Introduced by Baudon, Bensmail, Przybyªo, and Wo¹niak in

2013 (the paper published in 2015).

Motivated by the (1-2-3)-conjecture:

For every graph with no K2 component there exists an edge

weighting with 1, 2, and 3 such that for every two adjacent

vertices the sums on their incident edges are distinct.
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Example: K5

A test for the audience... How many colors?

And now K5:
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Decomposable graphs

A graph is decomposable if it admits a locally irregular

edge-coloring (LIE-C).

The minimum k for which there is a LIE-C of a graph G with

k colors is the locally irregular chromatic index of G , χ′
irr

(G ).

Not all graphs are decomposable, e.g. odd-length paths,

odd-length cycles.

A complete characterization was given by Baudon, Bensmail,

Przybyªo, and Wo¹niak.
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Decomposable graphs

De�ne a family of graphs T recursively:

The triangle C3 belongs to T .
Every other graph of this family can be constructed by taking

an auxiliary graph F which might either be a path of even

length or a path of odd length with a triangle glued to one

end, then choosing a graph G ∈ T containing a triangle with

at least one vertex v of degree 2 and �nally identifying v with

a vertex of degree 1 in F .
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The Conjecture

Conjecture 1 (Baudon et al., 2015)

For every decomposable graph G , it holds χ′
irr

(G ) ≤ 3.

The conjecture, if true, is tight; consider e.g. C6.

Theorem 2 (Baudon et al., 2015)

For every d-regular graph G , with d ≥ 107, it holds χ′
irr

(G ) ≤ 3.

Theorem 3 (Przybyªo, 2016+)

For every graph G , with δ(G ) ≥ 1010, it holds χ′
irr

(G ) ≤ 3.
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The upper bound

Bensmail, Merker, and Thomassen established the �rst constant

upper bound using decompositions into bipartite graphs.

Theorem 4 (Bensmail et al., 2017)

For every decomposable graph G , it holds χ′
irr

(G ) ≤ 328.

Currently the best:

Theorem 5 (BL, Przybyªo, Soták, 2016+)

For every decomposable graph G , it holds χ′
irr

(G ) ≤ 220.



Structural lemma

Let K ′′1,3 denote the complete bipartite graph K1,3 with two

edges subdivided once.

An edge-decomposition of a connected graph is pertinent if it

is comprised of 2-paths and at most one element isomorphic

either to K1,3 or K ′′1,3.

If a graph is not connected, then its edge-decomposition is

pertinent if the restriction to every component of the graph is

pertinent.

P3 K1,3 K ′′
1,3



Structural lemma

Theorem 6 (Bensmail et al., 2017)

Let G be a decomposable connected graph of odd size. Then it

contains a locally irregular subgraph H such that every connected

component of G − E (H) has even size.

From the proof of above, we obtain the following formulation:

Lemma 7 (Bensmail et al., 2017)

Every connected decomposable graph admits a pertinent

edge-decomposition.

An edge-decomposition D of a graph is strongly pertinent if it is

pertinent and in the case D contains an element isomorphic to K ′′1,3
in some component C , the graph has no pertinent

edge-decomposition without K ′′1,3 in C .
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Subcubic graphs

Theorem 8 (BL, Przybyªo, Soták, 2016+)

For every decomposable graph G with ∆(G ) = 3, it holds

χ′
irr

(G ) ≤ 4.

Or stronger:

Theorem 9 (BL, Przybyªo, Soták, 2016+)

Let G be a decomposable subcubic graph and let D be a strongly

pertinent edge-decomposition of G . Then, G admits a locally

irregular edge-coloring with at most 4 colors such that

(i) the edges of every element of D are colored with the same

color; and

(ii) if the edges of two incident elements p1, p2 of D are colored

with the same color, then the vertex, at which p1 and p2 are

incident, is the central vertex of either p1 or p2.
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Bipartite graphs

Theorem 10 (Baudon et al., 2015)

Let G be a regular bipartite graph with minimum degree at least 3.

Then

χ′irr(G ) ≤ 2 .

A decomposable bipartite graph is balanced if all the vertices in one

of the two partition parts have even degrees.

Lemma 11 (Bensmail et al., 2017)

Let F be a balanced forest. Then F admits a LIE-C with at most 2

colors. Moreover, for each vertex v in the partition with no vertex

of odd degree, all edges incident to v have the same color.



Bipartite graphs

Theorem 12 (BL, Przybyªo, Soták, 2016+)

Let G be a (multi)graph not isomorphic to an odd cycle. Then

χ′irr(S(G )) ≤ 2 .

Here, S(G ) denotes the full subdivision of G , i.e. each edge of G is

subdivided once.

Question 13

Is every connected balanced graph, which is not a cycle of length

4k + 2, locally irregular 2-edge-colorable?
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Bipartite graphs

Theorem 14 (Bensmail et al., 2017)

Let G be a balanced graph. Then

χ′irr(G ) ≤ 7 .

And consequently:

Theorem 15 (Bensmail et al., 2017)

Let G be a decomposable bipartite graph. Then

χ′irr(G ) ≤ 10 .

Moreover, if G has an even number of edges, then χ′
irr

(G ) ≤ 9.



Vertex-parity edge-coloring

π : V (G )→ {0, 1} is a vertex signature for G , and a pair

(G , π) is a parity pair.

A vertex-parity edge-coloring of a parity pair (G , π) is a (not

necessarily proper) edge-coloring such that at every vertex v
each appearing color c is in parity accordance with π, i.e. the
number of edges of color c incident to v is even if π(v) = 0,

and odd if π(v) = 1.

vertex-parity chromatic index χ′p(G , π)

Necessary conditions for the existence of χ′p(G , π):

(P1) Every vertex v of (G , π) with π(v) = 0 has even degree in G .

(P2) In every component of G , there are zero or at least two

vertices with the vertex signature value 1.
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Bipartite graphs

Theorem 16 (BL, Petru²evski, �krekovski, 2016+)

Let G be a connected graph, and let (G , π) be a proper parity pair.

If |π−1(1)| 6= 3, then

χ′p(G , π) ≤ 4 .

Consequently:

Theorem 17 (BL, Przybyªo, Soták, 2016+)

Let G be a balanced graph. Then

χ′irr(G ) ≤ 4 .
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Bipartite graphs

Theorem 18 (BL, Przybyªo, Soták, 2016+)

Let G be a decomposable bipartite graph. Then

χ′irr(G ) ≤ 7 .

Moreover, if G has an even number of edges, then the upper bound

is 6.



Even-sized graphs

Theorem 19 (Bensmail et al., 2017)

Let G be a d-degenerate graph of even size. Then

χ′irr(G ) ≤ 9(dlog2(d + 1)e+ 1) .

By Theorem 18 we hence have:

Corollary 20 (BL, Przybyªo, Soták, 2016+)

Let G be a d-degenerate graph of even size. Then

χ′irr(G ) ≤ 6(dlog2(d + 1)e+ 1) .
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Another structural lemma

Lemma 21 (Bensmail et al., 2017)

Let d be a natural number. If G is a connected graph of even size,

then G can be decomposed into two graphs D and H such that D
is 2d-degenerate, every component of D has even size, and the

minimum degree of H is at least d − 1.

This together with Theorem 3 implies the main theorem:

Theorem 22 (BL, Przybyªo, Soták, 2016+)

For every decomposable graph G , it holds χ′
irr

(G ) ≤ 220.
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