Results on locally irregular edge-coloring

Borut Lužar¹

joint work with

Jakub Przybyło² & Roman Soták³

¹Faculty of Information Studies, Novo mesto, Slovenia
²AGH University of Science and Technology, Krakow, Poland
³Pavol J. Šafárik University, Košice, Slovakia

52nd Czech-Slovak Conference on Combinatorics and Graph Theory May 29, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Basics

- A graph *G* is locally irregular if every two adjacent vertices have distinct degrees.
- An edge-coloring is locally irregular if every color class induces a locally irregular graph.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Basics

- A graph G is locally irregular if every two adjacent vertices have distinct degrees.
- An edge-coloring is locally irregular if every color class induces a locally irregular graph.
- Always improper—paths of odd length do not admit such a coloring
- Introduced by Baudon, Bensmail, Przybyło, and Woźniak in 2013 (the paper published in 2015).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Basics

- A graph G is locally irregular if every two adjacent vertices have distinct degrees.
- An edge-coloring is locally irregular if every color class induces a locally irregular graph.
- Always improper—paths of odd length do not admit such a coloring
- Introduced by Baudon, Bensmail, Przybyło, and Woźniak in 2013 (the paper published in 2015).
- Motivated by the (1-2-3)-conjecture:

For every graph with no K_2 component there exists an edge weighting with 1, 2, and 3 such that for every two adjacent vertices the sums on their incident edges are distinct.

A test for the audience... How many colors?

- A graph is decomposable if it admits a locally irregular edge-coloring (LIE-C).
- The minimum k for which there is a LIE-C of a graph G with k colors is the locally irregular chromatic index of G, χ'_{irr}(G).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- A graph is decomposable if it admits a locally irregular edge-coloring (LIE-C).
- The minimum k for which there is a LIE-C of a graph G with k colors is the locally irregular chromatic index of G, χ'_{irr}(G).
- Not all graphs are decomposable, e.g. odd-length paths, odd-length cycles.
- A complete characterization was given by Baudon, Bensmail, Przybyło, and Woźniak.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Define a family of graphs \mathcal{T} recursively:

• The triangle C_3 belongs to \mathcal{T} .

Every other graph of this family can be constructed by taking an auxiliary graph F which might either be a path of even length or a path of odd length with a triangle glued to one end, then choosing a graph $G \in \mathcal{T}$ containing a triangle with at least one vertex v of degree 2 and finally identifying v with a vertex of degree 1 in F.

ション ふゆ く 山 マ チャット しょうくしゃ

Define a family of graphs \mathcal{T} recursively:

- The triangle C_3 belongs to \mathcal{T} .
- Every other graph of this family can be constructed by taking an auxiliary graph F which might either be a path of even length or a path of odd length with a triangle glued to one end, then choosing a graph $G \in \mathcal{T}$ containing a triangle with at least one vertex v of degree 2 and finally identifying v with a vertex of degree 1 in F.

Define a family of graphs \mathcal{T} recursively:

- The triangle C_3 belongs to \mathcal{T} .
- Every other graph of this family can be constructed by taking an auxiliary graph F which might either be a path of even length or a path of odd length with a triangle glued to one end, then choosing a graph $G \in \mathcal{T}$ containing a triangle with at least one vertex v of degree 2 and finally identifying v with a vertex of degree 1 in F.

Define a family of graphs \mathcal{T} recursively:

- The triangle C_3 belongs to \mathcal{T} .
- Every other graph of this family can be constructed by taking an auxiliary graph F which might either be a path of even length or a path of odd length with a triangle glued to one end, then choosing a graph $G \in \mathcal{T}$ containing a triangle with at least one vertex v of degree 2 and finally identifying v with a vertex of degree 1 in F.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Conjecture 1 (Baudon et al., 2015)

For every decomposable graph G, it holds $\chi'_{\mathrm{irr}}(G) \leq 3$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Conjecture 1 (Baudon et al., 2015)

For every decomposable graph G, it holds $\chi'_{\mathrm{irr}}(G) \leq 3$.

The conjecture, if true, is tight; consider e.g. C_6 .

Conjecture 1 (Baudon et al., 2015)

For every decomposable graph G, it holds $\chi'_{\mathrm{irr}}(G) \leq 3$.

The conjecture, if true, is tight; consider e.g. C_6 .

Theorem 2 (Baudon et al., 2015)

For every d-regular graph G, with $d \ge 10^7$, it holds $\chi'_{irr}(G) \le 3$.

(ロ) (型) (E) (E) (E) (O)

Conjecture 1 (Baudon et al., 2015)

For every decomposable graph G, it holds $\chi'_{\mathrm{irr}}(G) \leq 3$.

The conjecture, if true, is tight; consider e.g. C_6 .

Theorem 2 (Baudon et al., 2015)

For every d-regular graph G, with $d \ge 10^7$, it holds $\chi'_{\rm irr}(G) \le 3$.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem 3 (Przybyło, 2016+)

For every graph G, with $\delta(G) \ge 10^{10}$, it holds $\chi'_{\rm irr}(G) \le 3$.

The upper bound

Bensmail, Merker, and Thomassen established the first constant upper bound using decompositions into bipartite graphs.

Theorem 4 (Bensmail et al., 2017)

For every decomposable graph G, it holds $\chi'_{irr}(G) \leq 328$.

Currently the best:

Theorem 5 (BL, Przybyło, Soták, 2016+)

For every decomposable graph G, it holds $\chi'_{irr}(G) \leq 220$.

ション ふゆ く 山 マ チャット しょうくしゃ

- Let K''_{1,3} denote the complete bipartite graph K_{1,3} with two edges subdivided once.
- An edge-decomposition of a connected graph is pertinent if it is comprised of 2-paths and at most one element isomorphic either to $K_{1,3}$ or $K_{1,3}''$.
- If a graph is not connected, then its edge-decomposition is pertinent if the restriction to every component of the graph is pertinent.

・ロト ・ 日本 ・ 日本 ・ 日本

Theorem 6 (Bensmail et al., 2017)

Let G be a decomposable connected graph of odd size. Then it contains a locally irregular subgraph H such that every connected component of G - E(H) has even size.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 6 (Bensmail et al., 2017)

Let G be a decomposable connected graph of odd size. Then it contains a locally irregular subgraph H such that every connected component of G - E(H) has even size.

ション ふゆ く 山 マ チャット しょうくしゃ

From the proof of above, we obtain the following formulation:

Lemma 7 (Bensmail et al., 2017)

Every connected decomposable graph admits a pertinent edge-decomposition.

Theorem 6 (Bensmail et al., 2017)

Let G be a decomposable connected graph of odd size. Then it contains a locally irregular subgraph H such that every connected component of G - E(H) has even size.

From the proof of above, we obtain the following formulation:

Lemma 7 (Bensmail et al., 2017)

Every connected decomposable graph admits a pertinent edge-decomposition.

An edge-decomposition \mathcal{D} of a graph is strongly pertinent if it is pertinent and in the case \mathcal{D} contains an element isomorphic to $\mathcal{K}_{1,3}''$ in some component C, the graph has no pertinent edge-decomposition without $\mathcal{K}_{1,3}''$ in C.

Subcubic graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 8 (BL, Przybyło, Soták, 2016+)

For every decomposable graph G with $\Delta(G) = 3$, it holds $\chi'_{\rm irr}(G) \leq 4$.

Subcubic graphs

Theorem 8 (BL, Przybyło, Soták, 2016+)

For every decomposable graph G with $\Delta(G) = 3$, it holds $\chi'_{\mathrm{irr}}(G) \leq 4$.

Or stronger:

Theorem 9 (BL, Przybyło, Soták, 2016+)

Let G be a decomposable subcubic graph and let \mathcal{D} be a strongly pertinent edge-decomposition of G. Then, G admits a locally irregular edge-coloring with at most 4 colors such that

- (i) the edges of every element of D are colored with the same color; and
- (ii) if the edges of two incident elements p_1 , p_2 of \mathcal{D} are colored with the same color, then the vertex, at which p_1 and p_2 are incident, is the central vertex of either p_1 or p_2 .

Theorem 10 (Baudon et al., 2015)

Let G be a regular bipartite graph with minimum degree at least 3. Then

 $\chi'_{\mathrm{irr}}(G) \leq 2$.

A decomposable bipartite graph is balanced if all the vertices in one of the two partition parts have even degrees.

Lemma 11 (Bensmail et al., 2017)

Let F be a balanced forest. Then F admits a LIE-C with at most 2 colors. Moreover, for each vertex v in the partition with no vertex of odd degree, all edges incident to v have the same color.

Theorem 12 (BL, Przybyło, Soták, 2016+)

Let G be a (multi)graph not isomorphic to an odd cycle. Then $\chi'_{
m irr}(\mathcal{S}(G))\leq 2$.

Here, S(G) denotes the full subdivision of G, i.e. each edge of G is subdivided once.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem 12 (BL, Przybyło, Soták, 2016+)

Let G be a (multi)graph not isomorphic to an odd cycle. Then $\chi_{\rm irr}'({\cal S}(G))\leq 2\,.$

Here, S(G) denotes the full subdivision of G, i.e. each edge of G is subdivided once.

Question 13

Is every connected balanced graph, which is not a cycle of length 4k + 2, locally irregular 2-edge-colorable?

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem 14 (Bensmail et al., 2017)

Let G be a balanced graph. Then

 $\chi'_{\mathrm{irr}}(G) \leq 7$.

And consequently:

Theorem 15 (Bensmail et al., 2017)

Let G be a decomposable bipartite graph. Then

 $\chi'_{
m irr}(G) \leq 10$.

ション ふゆ く 山 マ チャット しょうくしゃ

Moreover, if G has an even number of edges, then $\chi'_{irr}(G) \leq 9$.

• $\pi: V(G) \to \{0, 1\}$ is a vertex signature for G, and a pair (G, π) is a parity pair.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $\pi: V(G) \to \{0, 1\}$ is a vertex signature for G, and a pair (G, π) is a parity pair.
- A vertex-parity edge-coloring of a parity pair (G, π) is a (not necessarily proper) edge-coloring such that at every vertex v each appearing color c is in parity accordance with π, i.e. the number of edges of color c incident to v is even if π(v) = 0, and odd if π(v) = 1.

ション ふゆ く 山 マ チャット しょうくしゃ

- $\pi: V(G) \to \{0, 1\}$ is a vertex signature for G, and a pair (G, π) is a parity pair.
- A vertex-parity edge-coloring of a parity pair (G, π) is a (not necessarily proper) edge-coloring such that at every vertex v each appearing color c is in parity accordance with π, i.e. the number of edges of color c incident to v is even if π(v) = 0, and odd if π(v) = 1.

ション ふゆ く 山 マ チャット しょうくしゃ

• vertex-parity chromatic index $\chi'_p(G,\pi)$

- $\pi: V(G) \to \{0,1\}$ is a vertex signature for G, and a pair (G,π) is a parity pair.
- A vertex-parity edge-coloring of a parity pair (G, π) is a (not necessarily proper) edge-coloring such that at every vertex v each appearing color c is in parity accordance with π, i.e. the number of edges of color c incident to v is even if π(v) = 0, and odd if π(v) = 1.
- vertex-parity chromatic index $\chi'_p(G,\pi)$
- Necessary conditions for the existence of $\chi'_p(G, \pi)$:
 - (P_1) Every vertex v of (G, π) with $\pi(v) = 0$ has even degree in G.
 - (P_2) In every component of G, there are zero or at least two vertices with the vertex signature value 1.

Theorem 16 (BL, Petruševski, Škrekovski, 2016+)

Let G be a connected graph, and let (G, π) be a proper parity pair. If $|\pi^{-1}(1)| \neq 3$, then

 $\chi'_p(G,\pi) \leq 4.$

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem 16 (BL, Petruševski, Škrekovski, 2016+)

Let G be a connected graph, and let (G, π) be a proper parity pair. If $|\pi^{-1}(1)| \neq 3$, then $\chi'_p(G, \pi) \leq 4$.

Theorem 17 (BL, Przybyło, Soták, 2016+)

Let G be a balanced graph. Then

 $\chi'_{\mathrm{irr}}(G) \leq 4$.

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem 18 (BL, Przybyło, Soták, 2016+)

Let G be a decomposable bipartite graph. Then

 $\chi'_{\mathrm{irr}}(G) \leq 7$.

Moreover, if G has an even number of edges, then the upper bound is 6.

(ロ) (型) (E) (E) (E) (O)

Even-sized graphs

Theorem 19 (Bensmail et al., 2017)

Let G be a d-degenerate graph of even size. Then

 $\chi'_{\mathrm{irr}}(G) \leq 9(\lceil \log_2(d+1) \rceil + 1)$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Even-sized graphs

Theorem 19 (Bensmail et al., 2017)

Let G be a d-degenerate graph of even size. Then

 $\chi'_{\mathrm{irr}}(G) \leq 9(\lceil \log_2(d+1) \rceil + 1).$

By Theorem 18 we hence have:

Corollary 20 (BL, Przybyło, Soták, 2016+)

Let G be a d-degenerate graph of even size. Then

 $\chi'_{\mathrm{irr}}(G) \leq \mathbf{6}(\lceil \log_2(d+1) \rceil + 1).$

ション ふゆ く 山 マ チャット しょうくしゃ

Another structural lemma

Lemma 21 (Bensmail et al., 2017)

Let d be a natural number. If G is a connected graph of even size, then G can be decomposed into two graphs D and H such that D is 2d-degenerate, every component of D has even size, and the minimum degree of H is at least d - 1.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Another structural lemma

Lemma 21 (Bensmail et al., 2017)

Let d be a natural number. If G is a connected graph of even size, then G can be decomposed into two graphs D and H such that D is 2d-degenerate, every component of D has even size, and the minimum degree of H is at least d - 1.

ション ふゆ く 山 マ チャット しょうくしゃ

This together with Theorem 3 implies the main theorem:

Theorem 22 (BL, Przybyło, Soták, 2016+)

For every decomposable graph G, it holds $\chi'_{
m irr}(G) \leq 220$.

Sketch of the proof:

Sketch of the proof:

▲□▶ ▲@▶ ▲臣▶ ★臣▶ 臣 のへぐ

Sketch of the proof:

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

Sketch of the proof:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Sketch of the proof:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Sketch of the proof:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Sketch of the proof:

Sketch of the proof:

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Sketch of the proof:

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Děkuju! & Ďakujem!