On 3-Choosability of Planar Graphs with Maximum Degree 4

Borut Lužar

Faculty of Information Studies, Novo mesto, Slovenia
borut.luzar@gmail.com
http://luzar.fis.unm.si
joint work with
François Dross, Mária Maceková \& Roman Soták
$8^{\text {th }}$ Cracow Conference on Graph Theory "Rytro '18"

September 10, 2018

The Problem

Problem 1 (Czap, Jendrol \& Voigt [31)
Is there a bipartite plane graph such that its medial graph has chromatic number 4?

In other words:
Is there a bipartite plane graph that needs 4 colors for facially-proper edge-coloring?

Facially-Proper Edge-Coloring

■ Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

■ Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Facially-Proper Edge-Coloring

- Facially-proper edge-coloring of a plane graph is a coloring with edges consecutive on some facial trail (i.e., facially-adjacent edges) receiving distinct colors.

Medial Graph

■ The medial graph $M(G)$ of a plane graph G :

- $V(M(G))=E(G)$;
- e, $f \in V(M(G))$ are adjacent if e, f are facially-adjacent in G.

Medial Graph

- The medial graph $M(G)$ of a plane graph G :
- $V(M(G))=E(G)$;
- e, $f \in V(M(G))$ are adjacent if e, f are facially-adjacent in G.

Medial Graph

- The medial graph $M(G)$ of a plane graph G :
- $V(M(G))=E(G)$;
- e, $f \in V(M(G))$ are adjacent if e, f are facially-adjacent in G.

Medial Graph

- The medial graph $M(G)$ of a plane graph G :
- $V(M(G))=E(G)$;
- e, $f \in V(M(G))$ are adjacent if e, f are facially-adjacent in G.

Medial Graph

- Medial graphs of plane graphs are:
- 4-regular,
- planar

Medial Graph

- Medial graphs of plane graphs are:
- 4-regular,
- planar $\Rightarrow 4$-colorable.

Medial Graph

- Medial graphs of plane graphs are:
- 4-regular,
- planar $\Rightarrow 4$-colorable.
- Problem 1 reduces to investigating 3-colorability of planar graphs with maximum degree 4;

Medial Graph

- Medial graphs of plane graphs are:
- 4-regular,
- planar $\Rightarrow 4$-colorable.

■ Problem 1 reduces to investigating 3-colorability of planar graphs with maximum degree 4;

- Deciding whether a planar graph G with $\Delta(G)=4$ admits a 3-coloring is NP-complete [7];

Medial Graph

- Medial graphs of plane graphs are:
- 4-regular,
- planar $\Rightarrow 4$-colorable.

■ Problem 1 reduces to investigating 3-colorability of planar graphs with maximum degree 4;

- Deciding whether a planar graph G with $\Delta(G)=4$ admits a 3-coloring is NP-complete [7];
- \rightarrow Lots of attention given to 3-colorability.

3-Colorability of Planar Graphs

Theorem 2 (Heawood [10])

A plane triangulation is 3-colorable if and only if all its vertices have even degree.

■ With many generalizations...

3-Colorability of Planar Graphs

Theorem 2 (Heawood [10])
 A plane triangulation is 3-colorable if and only if all its vertices have even degree.

- With many generalizations...

Theorem 3 (Grötzsch [8])

Every triangle-free planar graph is 3-colorable.

3-Colorability of Planar Graphs

Theorem 2 (Heawood [10])
 A plane triangulation is 3-colorable if and only if all its vertices have even degree.

■ With many generalizations...

Theorem 3 (Grötzsch [8])

Every triangle-free planar graph is 3-colorable.

- Improved by Grünbaum (and Aksenov) to planar graphs with at most three triangles.

3-Colorability of Planar Graphs with Δ 's

- What if we allow many triangles in planar graphs?

3-Colorability of Planar Graphs with Δ 's

■ What if we allow many triangles in planar graphs?

Conjecture 4 (Havel [9])

There exists an absolute constant d such that if G is a planar graph and every two distinct triangles in G are at distance at least d, then G is 3-colorable.

3-Colorability of Planar Graphs with Δ 's

■ What if we allow many triangles in planar graphs?

Conjecture 4 (Havel [9])

There exists an absolute constant d such that if G is a planar graph and every two distinct triangles in G are at distance at least d, then G is 3-colorable.

■ Proved by Dvořák, Král', and Thomas [5].

3-Colorability of Planar Graphs with Δ 's

■ What if we allow many triangles in planar graphs?

Conjecture 4 (Havel [9])

There exists an absolute constant d such that if G is a planar graph and every two distinct triangles in G are at distance at least d, then G is 3-colorable.

■ Proved by Dvořák, Král', and Thomas [5].

Conjecture 5 (Steinberg [11])

Every planar graph without cycles of lengths 4 and 5 is 3 -colorable.

3-Colorability of Planar Graphs with Δ 's

■ What if we allow many triangles in planar graphs?

Conjecture 4 (Havel [9)

There exists an absolute constant d such that if G is a planar graph and every two distinct triangles in G are at distance at least d, then G is 3-colorable.

- Proved by Dvořák, Král', and Thomas [5].

Conjecture 5 (Steinberg [11])

Every planar graph without cycles of lengths 4 and 5 is 3-colorable.
■ Disproved by Cohen-Addad, Hebdige, Král', Li, and Salgado [2].

3-Choosability of Planar Graphs

- In the list setting Grötzsch's result does not hold.

3-Choosability of Planar Graphs

- In the list setting Grötzsch's result does not hold.

Theorem 6 (Voigt [13])
There are triangle-free planar graphs which are not 3-choosable.

3-Choosability of Planar Graphs

- In the list setting Grötzsch's result does not hold.

Theorem 6 (Voigt [13])

There are triangle-free planar graphs which are not 3-choosable.

- Thomassen [12] proved having girth 5 is sufficient for 3-choosability;

3-Choosability of Planar Graphs

- In the list setting Grötzsch's result does not hold.

Theorem 6 (Voigt [13])

There are triangle-free planar graphs which are not 3-choosable.

- Thomassen [12] proved having girth 5 is sufficient for 3-choosability;
- Analogue of Havel's conjecture (no 3-cycles and no 4-cycles) was proved by Dvořák [4];

3-Choosability of Planar Graphs

- In the list setting Grötzsch's result does not hold.

Theorem 6 (Voigt [13])

There are triangle-free planar graphs which are not 3-choosable.

- Thomassen [12] proved having girth 5 is sufficient for 3-choosability;
- Analogue of Havel's conjecture (no 3-cycles and no 4-cycles) was proved by Dvořák [4];
- Many results of Steinberg's type, currently the best by Dvořák and Postle [6]: Planar graphs without cycles of lengths from 4 to 8 are 3-choosable;

3-Choosability of Planar Graphs

- In the list setting Grötzsch's result does not hold.

Theorem 6 (Voigt [13])

There are triangle-free planar graphs which are not 3-choosable.

- Thomassen [12] proved having girth 5 is sufficient for 3-choosability;
- Analogue of Havel's conjecture (no 3-cycles and no 4-cycles) was proved by Dvořák [4];
- Many results of Steinberg's type, currently the best by Dvořák and Postle [6]: Planar graphs without cycles of lengths from 4 to 8 are 3-choosable;
- Open: Are planar graphs without cycles of lengths from 4 to 7 (or even 6) 3-choosable?

Our Result

Theorem 7 (Dross, BL, Maceková \& Soták - 2018+)

Every loopless planar graph with maximum degree 4 obtained as a subgraph of the medial graph of a bipartite plane graph is 3-choosable.

Our Result

Theorem 7 (Dross, BL, Maceková \& Soták - 2018+ ${ }^{+}$

Every loopless planar graph with maximum degree 4 obtained as a subgraph of the medial graph of a bipartite plane graph is 3-choosable.

- Answer to Problem 1 also in the list setting.

Sketch of Proof - 1

- Structure of our graph:
- medial graph G of a bipartite planar graph B with $\delta(B) \geq 2$;

Sketch of Proof - 1

■ Structure of our graph:

- medial graph G of a bipartite planar graph B with $\delta(B) \geq 2$;
- \Rightarrow two types of faces:

Sketch of Proof - 1

- Structure of our graph:
- medial graph G of a bipartite planar graph B with $\delta(B) \geq 2$;
- \Rightarrow two types of faces:

■ faces corresponding to vertices of B (black faces);

- faces corresponding to faces of B (white faces);

Sketch of Proof - 1

- Structure of our graph:
- medial graph G of a bipartite planar graph B with $\delta(B) \geq 2$;
- \Rightarrow two types of faces:
- faces corresponding to vertices of B (black faces);
- faces corresponding to faces of B (white faces);
- White faces have even length;

Sketch of Proof - 1

- Structure of our graph:
- medial graph G of a bipartite planar graph B with $\delta(B) \geq 2$;
- \Rightarrow two types of faces:
- faces corresponding to vertices of B (black faces);
- faces corresponding to faces of B (white faces);
- White faces have even length;
- No two black (or white) faces are adjacent;

Sketch of Proof - 1

- Structure of our graph:
- medial graph G of a bipartite planar graph B with $\delta(B) \geq 2$;
- \Rightarrow two types of faces:
- faces corresponding to vertices of B (black faces);
- faces corresponding to faces of B (white faces);
- White faces have even length;
- No two black (or white) faces are adjacent;
$■ \quad \Rightarrow$ Every edge in G is incident with one black and one white face;

Sketch of Proof - 1

- Structure of our graph:
- medial graph G of a bipartite planar graph B with $\delta(B) \geq 2$;
- \Rightarrow two types of faces:
- faces corresponding to vertices of B (black faces);
- faces corresponding to faces of B (white faces);
- White faces have even length;
- No two black (or white) faces are adjacent;
$■ \quad \Rightarrow$ Every edge in G is incident with one black and one white face;
- Triangles are close \& there are short cycles \rightarrow still 3-choosable!

Sketch of Proof - 2

Sketch of Proof - 2

- Direct the edges such that each arc has its black face on the left hand side when going from its initial to its terminal vertex

Sketch of Proof - 2

- Direct the edges such that each arc has its black face on the left hand side when going from its initial to its terminal vertex

Sketch of Proof - 3

- Every vertex has precisely two incoming and two outgoing arcs;

Sketch of Proof - 3

■ Every vertex has precisely two incoming and two outgoing arcs;

- This is calling for...

Sketch of Proof - 3

- Every vertex has precisely two incoming and two outgoing arcs;
- This is calling for...

Theorem 8 (Alon \& Tarsi [1])

Let D be a directed graph, and let L be a list-assignment such that $|L(v)| \geq d_{D}^{+}(v)+1$ for each $v \in V(D)$. If $E^{e}(D) \neq E^{\circ}(D)$, then D is L-colorable.

Sketch of Proof - 3

■ Every vertex has precisely two incoming and two outgoing arcs;

- This is calling for...

Theorem 8 (Alon \& Tarsi [1])

Let D be a directed graph, and let L be a list-assignment such that $|L(v)| \geq d_{D}^{+}(v)+1$ for each $v \in V(D)$. If $E^{e}(D) \neq E^{\circ}(D)$, then D is L-colorable.

- We need to prove that the number of even spanning Eulerian subgraphs is different from the number of odd spanning Eulerian subgraphs in G.

Sketch of Proof - 4

- Define the boundary, interior, and exterior of a plane Eulerian graph H as follows:
- First, color the faces of H properly with two colors (possible since the dual of H is bipartite);

Sketch of Proof - 4

- Define the boundary, interior, and exterior of a plane Eulerian graph H as follows:
- First, color the faces of H properly with two colors (possible since the dual of H is bipartite);
- Let the outerface of H be colored green and its adjacent faces blue;

Sketch of Proof - 4

- Define the boundary, interior, and exterior of a plane Eulerian graph H as follows:
- First, color the faces of H properly with two colors (possible since the dual of H is bipartite);
- Let the outerface of H be colored green and its adjacent faces blue;
- The boundary of $H, \partial(H)$, is the graph H itself;

Sketch of Proof - 4

- Define the boundary, interior, and exterior of a plane Eulerian graph H as follows:
- First, color the faces of H properly with two colors (possible since the dual of H is bipartite);
- Let the outerface of H be colored green and its adjacent faces blue;
- The boundary of $H, \partial(H)$, is the graph H itself;
- The interior $\operatorname{int}(H)$ is the graph induced by the vertices of G lying in the blue faces of H together with the vertices of H without the edges of H;

Sketch of Proof - 4

- Define the boundary, interior, and exterior of a plane Eulerian graph H as follows:
- First, color the faces of H properly with two colors (possible since the dual of H is bipartite);
- Let the outerface of H be colored green and its adjacent faces blue;
- The boundary of $H, \partial(H)$, is the graph H itself;
- The interior $\operatorname{int}(H)$ is the graph induced by the vertices of G lying in the blue faces of H together with the vertices of H without the edges of H;
- The exterior $\operatorname{ext}(H)$ is the graph induced by the vertices of G lying in the green faces of H together with the vertices of H without the edges of H.
- For a subgraph X of G, we define:
$\partial_{X}(H)=\partial(H) \cap X, \operatorname{int}_{X}(H)=\operatorname{int}(H) \cap X, \operatorname{ext}_{X}(H)=\operatorname{ext}(H) \cap X$.

Sketch of Proof - 5

Observation 1

Let D_{1} and D_{2} be two directed cycles in G intersecting (i.e., having some common vertices) in such a way that $\partial\left(D_{2}\right) \cap \operatorname{int}\left(D_{1}\right) \neq \emptyset$ and $\partial\left(D_{2}\right) \cap \operatorname{ext}\left(D_{1}\right) \neq \emptyset$. Then $E\left(D_{1}\right) \cap E\left(D_{2}\right) \neq \emptyset$.

Sketch of Proof - 5

Observation 1

Let D_{1} and D_{2} be two directed cycles in G intersecting (i.e., having some common vertices) in such a way that $\partial\left(D_{2}\right) \cap \operatorname{int}\left(D_{1}\right) \neq \emptyset$ and $\partial\left(D_{2}\right) \cap \operatorname{ext}\left(D_{1}\right) \neq \emptyset$. Then $E\left(D_{1}\right) \cap E\left(D_{2}\right) \neq \emptyset$.

- Implied by the choice of orientation: two consecutive edges on a directed cycle are always consecutive on some facial trail.

Sketch of Proof - 5

Observation 1

Let D_{1} and D_{2} be two directed cycles in G intersecting (i.e., having some common vertices) in such a way that $\partial\left(D_{2}\right) \cap \operatorname{int}\left(D_{1}\right) \neq \emptyset$ and $\partial\left(D_{2}\right) \cap \operatorname{ext}\left(D_{1}\right) \neq \emptyset$. Then $E\left(D_{1}\right) \cap E\left(D_{2}\right) \neq \emptyset$.

- Implied by the choice of orientation: two consecutive edges on a directed cycle are always consecutive on some facial trail.

not possible

Sketch of Proof - 6

- Next goal: Show that every odd Eulerian spanning subgraph of G can be injectively mapped to an even Eulerian spanning subgraph of G;

Sketch of Proof - 6

■ Next goal: Show that every odd Eulerian spanning subgraph of G can be injectively mapped to an even Eulerian spanning subgraph of G;

- By Observation 1, all edges of a given directed cycle C are incident either to black faces or to white faces in the interior of C;

Sketch of Proof - 6

■ Next goal: Show that every odd Eulerian spanning subgraph of G can be injectively mapped to an even Eulerian spanning subgraph of G;

- By Observation 1, all edges of a given directed cycle C are incident either to black faces or to white faces in the interior of C;
■ \Rightarrow We distinguish two types of directed cycles in G :
■ black cycles;
- white cycles.

Sketch of Proof - 6

■ \Rightarrow We distinguish two types of directed cycles in G :

- black cycles;
- white cycles.

Sketch of Proof - 7

- For a cycle D, the D-complement of a spanning Eulerian subgraph X of G is the spanning Eulerian subgraph \bar{X}^{D} with the edge set

$$
E\left(\bar{X}^{D}\right)=E\left(\operatorname{ext}_{x}(D)\right) \cup E\left(\operatorname{int}_{\bar{X}}(D)\right) \cup E\left(\partial_{\bar{X}}(D)\right)
$$

Sketch of Proof - 7

- For a cycle D, the D-complement of a spanning Eulerian subgraph X of G is the spanning Eulerian subgraph \bar{X}^{D} with the edge set

$$
E\left(\bar{X}^{D}\right)=E\left(\operatorname{ext}_{x}(D)\right) \cup E\left(\operatorname{int}_{\bar{X}}(D)\right) \cup E\left(\partial_{\bar{X}}(D)\right)
$$

- \bar{X}^{D} is also Eulerian by Observation 1.

Sketch of Proof - 8

Claim 1

For an odd black cycle D, the D-complement of an odd (even) Eulerian spanning subgraph X is an even (odd) Eulerian spanning subgraph \bar{X}^{D}.

Sketch of Proof - 8

Claim 1

For an odd black cycle D, the D-complement of an odd (even) Eulerian spanning subgraph X is an even (odd) Eulerian spanning subgraph \bar{X}^{D}.

Claim 2

Let X be an Eulerian spanning subgraph of G, and let D be a white odd Eulerian subgraph of X. Then, there is an odd black cycle in $\operatorname{int}_{X}(D)$ or $\operatorname{int}_{\bar{X}^{D}}(D)$.

Sketch of Proof - 9

- \mathcal{E} - the set of all Eulerian spanning subgraphs of G;

Sketch of Proof - 9

- \mathcal{E} - the set of all Eulerian spanning subgraphs of G;
- \mathcal{O} - a sorted set of all odd black cycles in G (sorted in ascending order by number of faces in their interiors);

Sketch of Proof - 9

- \mathcal{E} - the set of all Eulerian spanning subgraphs of G;
- \mathcal{O} - a sorted set of all odd black cycles in G (sorted in ascending order by number of faces in their interiors);
- Suppose there are k cycles, $C_{1}, C_{2}, \ldots, C_{k}$, in \mathcal{O};

Sketch of Proof - 9

- \mathcal{E} - the set of all Eulerian spanning subgraphs of G;
- \mathcal{O} - a sorted set of all odd black cycles in G (sorted in ascending order by number of faces in their interiors);
- Suppose there are k cycles, $C_{1}, C_{2}, \ldots, C_{k}$, in \mathcal{O};
- For every $i, 1 \leq i \leq k$, repeatedly remove all $X \in \mathcal{E}$ which either contain all the edges of C_{i} or none of them;

Sketch of Proof - 9

- \mathcal{E} - the set of all Eulerian spanning subgraphs of G;
- \mathcal{O} - a sorted set of all odd black cycles in G (sorted in ascending order by number of faces in their interiors);
- Suppose there are k cycles, $C_{1}, C_{2}, \ldots, C_{k}$, in \mathcal{O};
- For every $i, 1 \leq i \leq k$, repeatedly remove all $X \in \mathcal{E}$ which either contain all the edges of C_{i} or none of them;
- If in the step i we remove from \mathcal{E} some X, then we also remove its C_{i}-complement;

Sketch of Proof - 9

- \mathcal{E} - the set of all Eulerian spanning subgraphs of G;
- \mathcal{O} - a sorted set of all odd black cycles in G (sorted in ascending order by number of faces in their interiors);
- Suppose there are k cycles, $C_{1}, C_{2}, \ldots, C_{k}$, in \mathcal{O};
- For every $i, 1 \leq i \leq k$, repeatedly remove all $X \in \mathcal{E}$ which either contain all the edges of C_{i} or none of them;
- If in the step i we remove from \mathcal{E} some X, then we also remove its C_{i}-complement;
- Such pairs are always removed at the same step:

Claim 3

The number of odd Eulerian spanning subgraphs removed from \mathcal{E} at step i is equal to the number of even such subgraphs.

Sketch of Proof - 10

- After all cycles from \mathcal{O} are removed, there is no odd Eulerian spanning subgraph left in \mathcal{E};

Sketch of Proof - 10

- After all cycles from \mathcal{O} are removed, there is no odd Eulerian spanning subgraph left in \mathcal{E};

Claim 4

White faces of G can be colored with two colors, red and blue, such that every odd black cycle shares an edge with the boundary of at least one red and at least one blue face.

■ \Rightarrow There is at least one even Eulerian spanning subgraph, containing at least one edge of every odd cycle in G, but not all edges of any!

Sketch of Proof - 10

- After all cycles from \mathcal{O} are removed, there is no odd Eulerian spanning subgraph left in \mathcal{E};

Claim 4

White faces of G can be colored with two colors, red and blue, such that every odd black cycle shares an edge with the boundary of at least one red and at least one blue face.
$■ \quad \Rightarrow$ There is at least one even Eulerian spanning subgraph, containing at least one edge of every odd cycle in G, but not all edges of any!
■ \Rightarrow There are more even Eulerian spanning subgraphs in G as odd Eulerian spanning subgraphs;

Sketch of Proof - 10

- After all cycles from \mathcal{O} are removed, there is no odd Eulerian spanning subgraph left in \mathcal{E};

Claim 4

White faces of G can be colored with two colors, red and blue, such that every odd black cycle shares an edge with the boundary of at least one red and at least one blue face.
$■ \quad \Rightarrow$ There is at least one even Eulerian spanning subgraph, containing at least one edge of every odd cycle in G, but not all edges of any!
■ \Rightarrow There are more even Eulerian spanning subgraphs in G as odd Eulerian spanning subgraphs;

Is Planarity Needed?

Is Planarity Needed?

- The planarity condition is crucial!

Is Planarity Needed?

- The planarity condition is crucial!

Is Planarity Needed?

- The planarity condition is crucial!

Further Work

Conjecture 9

Every simple plane graph whose faces can be properly colored with two colors such that one color class contains only even faces is 3-colorable.

Further Work

Conjecture 9

Every simple plane graph whose faces can be properly colored with two colors such that one color class contains only even faces is 3-colorable.

- Why no parallel edges?

Further Work

Conjecture 9

Every simple plane graph whose faces can be properly colored with two colors such that one color class contains only even faces is 3-colorable.

- Why no parallel edges?

■ Take any plane graph with chromatic number 4 and replace every edge with two parallel edges.

Further Work

Conjecture 9

Every simple plane graph whose faces can be properly colored with two colors such that one color class contains only even faces is 3-colorable.

- Why no parallel edges?
- Take any plane graph with chromatic number 4 and replace every edge with two parallel edges.

Question 10

Is every simple plane graph whose faces can be properly colored with two colors such that one color class contains only even faces also 3-choosable?

References

I

[1] Alon, N., and Tarsi, M.
Colorings and orientations of graphs.
Combinatorica 12 (1992), 125-134.
[2] Cohen-Addad, V., Hebdige, M., KráL̆, D., Li, Z., and Salgado, E.
Steinberg's Conjecture is false.
J. Combin. Theory Ser. B 122 (2017), 452-456.
[3] Czap, J., JendroĽ, S., and Voigt, M.
Zig-zag facial total-coloring of plane graphs.
Opuscula Math. 38, 6 (2018), 819-827.

References

II

[4] Dvořák, Z.
3-choosability of planar graphs with (≤ 4)-cycles far apart.
J. Combin. Theory Ser. B 104 (2014), 28-59.
[5] Dvořák, Z., KráĽ, D., and Thomas, R.
Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies.
ArXiv Preprint (2016).
http://arxiv.org/abs/0911.0885v3.
[6] Dvořák, Z., and Postle, L.
Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8 .
J. Combin. Theory Ser. B 129 (2018), 38-54.

References

III

[7] Garey, M. R., Johnson, D. S., and Stockmeyer, L. Some simplified NP-complete graph problems.
Theoret. Comput. Sci. 1, 3 (1976), 237-267.
[8] Grötzsch, H.
Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel.
Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. 8 (1959), 109-120.
[9] Havel, I.
On a Conjecture of B. Grünbaum.
J. Combin. Theory Ser. B 7 (1969), 184-186.

References

IV

[10] Heawood, P. J.
On the four-colour map theorem.
Quart. J. Pure Appl. Math. 29 (1898), 270-285.
[11] Steinberg, R.
The State of the Three Color Problem.
In Quo Vadis, Graph Theory?, J. Gimbel, J. W. Kennedy, and L. V. Quintas, Eds., vol. 55 of Annals of Discrete Mathematics. Elsevier, 1993, pp. 211-248.
[12] Thomassen, C.
3-List-Coloring Planar Graphs of Girth 5.
J. Combin. Theory Ser. B 64, 1 (1995), 101-107.

References

V

[13] Voigt, M.
A not 3-choosable planar graph without 3-cycles.
Discrete Math. 146, 1 (1995), 325-328.

Thank you!

