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Definition

Star edge-coloring of a graph G:
— proper, without bichromatic 4-paths and 4-cycles;

m The smallest k for which a star k-edge-coloring of G exists:
— the star chromatic index of G, . (G);

m The name star comes from the vertex version where every
pair of colors induces a star forest;

Initiated by Liu and Deng in 2008 [8].
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What is known?

m Almost nothing.

m Tight bounds only for graphs of maximum degree at most 2
and trees;

m Open for as simple classes as complete graphs, complete
bipartite graphs, hypercubes, outerplanar graphs, cubic
graphs, etc.

Observation 1 (Paths)

For any positive n, x4 (Pn) = min{3,n — 1}.

Observation 2 (Cycles)

For any positive n £ 5, x4 (Cp) = 3; x4 (Gs) = 4.



Complete Graphs - Upper Bound

Theorem 3 (Dvorak, Mohar, Samal [ |)
The star chromatic index of the complete graph K,, satisfies
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Complete Graphs - Upper Bound

Theorem 3 (Dvorak, Mohar, Samal [ |)
The star chromatic index of the complete graph K,, satisfies

92v/32(1+0(1))v/Iog n
(log n)t/4

Xét(Kn) <n

In particular, for every € > 0 there exists a constant ¢ such that
X4 (Kn) < cntte for every n > 1.

m — using result on the size of a subset of {1,2,...,N} without
3-term arithmetic progression.
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Complete Graphs - Lower Bound

m Dvorak et al.: X (K,) >2n 2 @,

m Altering argument of Dvorak et al. one can show:

Theorem 4 (Bezegova et al., 2013T)

The star chromatic index of the complete graph K, satisfies

n—1

m Exact equality (without ceiling) attained for n € {1,2,8},
when every color appears same number of times;

m It cannot be true for n € {6,11,16}, i.e.
Xst (K6) > 10, X (K11) > 23, xg (K1e) > 37;

m Not (yet) known for n € {26,56}.
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The Conjecture

m No particularly nice conjecture for general graphs, so the
main conjecture is related to complete graphs

Conjecture 5 (Dvoidak, Mohar, Samal [ )

The star chromatic index of the complete graph K, is linear in n,
ie.,
X&(Kn) € O(n).
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Rotational Coloring

Inspired by acyclic edge-coloring of complete graphs;

Procedure:
Label the vertices of K, = Kyp+1 with {0,...,2¢};
m Take a near matching M of K, such that

{d(u,v) | uve M} ={1,2,... ¢},

where u < v and d(u,v) = min{v —u,(n— (v —u))};

Color edges of M with 3 colors:

w : M—{AB,C}
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Rotational Coloring

m Rotate M by i (modulo n), i € {0,1,...,n—1}:

M; ={(u+i)(v+1i)| uve M},

Color edges of every M;:

o (u+D)(v+i)— (i,o(uv)), uveM,

© uses 3n colors;

If © is star edge-coloring, we call it
rotational star 3-edge-coloring.
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3-edge-coloring of K,. Moreover, for n = 21, such a coloring does
not exist.



Rotational Coloring

Proposition 6 (BL, Mockov¢iakové, Soték, 20147)

For every odd n, 1 < n < 19, there is a rotational star
3-edge-coloring of K,. Moreover, for n = 21, such a coloring does
not exist.

m Proposition 6 verified by computer;

m For n =23 currently running;
1515283 matchings satisfying the ‘spanning’ assumption;
39366 possible (promising) colorings of a single matching.
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Rotational Coloring

m Why rotational approach?
m We were hoping for some pattern (which we can observe);

m Not the case.

Question 7

Does linear number of colors for star edge-coloring of K, imply
linear number of colors for rotational star edge-coloring of K,,?

Question 8

Is Conjecture 5 somehow ‘equivalent’ to Perfect One Factorization
Conjecture?
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Complete Bipartite Graphs

Observation 9 (Dvorak, Mohar, Samal [

Xét(Kn,n) < Xét(Kn) +n.

m Proof: color the edges a;b; by unique n colors;
color edges a;b;, i # j, with colors of the edges ij in K;

Observation 10 (Dvoiék, Mohar, Samal [ D

[log n]

Xeo(Kn) < > 277 (Kpnjai fnj2i1)-
=
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Complete Bipartite Graphs

m Sketch:




Complete Bipartite Graphs

m Sketch:

m No bichromatic component from two color bundles.



Computer Assisted Bounds

n Xst(Kn,n) Xst(Kn)
A304525

1 1 0

2 3 1

3 6 3

4 7 5

5 11 9

6 13 12

7 13<-<14 14

8 15<-<21 14

9 17<-<24 18

10 ] 19<- <30 |1 20<- <22



https://oeis.org/A304525

General Graphs

m Upper bound for general graphs is obtained from the bound
for complete graphs;



General Graphs

m Upper bound for general graphs is obtained from the bound
for complete graphs;

Theorem 11 (Dvorak, Mohar, Samal | |)

For a graph G it holds

Xet(G) < Xgt(Ka(c)+1) O(|oglogA(G) ’

and therefore x4 (G) < A(G) - 20(1)/log A(G)
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Trees and Outerplanar Graphs

Theorem 12 (Bezegova et al. | ])

For a tree T it holds

/ 3A(T)
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Trees and Outerplanar Graphs

Theorem 12 (Bezegova et al. | ])
For a tree T it holds

/ 3A(T)
aan=[2im)]

m Using the above result and taking a BFS tree of an
outerplanar graph:

Theorem 13 (Bezegova et al. | ])

For an outerplanar graph G it holds

X5 (G) < {%(G)J +12.
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Outerplanar Graphs

Conjecture 14 (Bezegova et al. [ ])

For an outerplanar graph G it holds

Xét(G) < \‘%(G)J +1.

m Recent result:

For an outerplanar graph G it holds

Xu(6) < {%(G)J +5.
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Theorem for Minor Closed Graphs

m Strong edge-coloring of a graph G: proper edge-coloring
where every three consecutive edges receive different colors;

m The smallest k for which a strong k-edge-coloring of G exists
is the strong chromatic index of G, x.(G);

m Restricted strong edge-coloring of a subgraph H of G:
— coloring H, satisfying the strong condition in G; \.(H|¢).

Theorem 16 (Wang, Wang & Wang | )

Let {F,H} be an edge-partition of a graph G. Then

Xet(G) < X (F) + xs(Hl)-



Planar Graphs

m Result for strong edge-coloring:

Theorem 17 (Faudree et al. | |)

For a planar graph G it holds

X5(G) < 4x'(G).
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Planar Graphs

Proof:
Color edges of G properly: (\/(G) colors) — coloring ¢;
For every color i € {1,...,X'(G)} — M; edges colored by i;

G/M; is planar — 4-vertex-colorable — coloring 7;

Vertices in G/M; correspond to edges colored by i/;
Such edges at distance 2 have different colors in G/M;;

Coloring e € E(G) with (¢(e), 7i(e)) gives strong
edge-coloring with at most \/(G) - 4 colors.



Planar Graphs

Theorem 18 (Wang, Hu & Wang | )

Every planar graph G has an edge-decomposition into two forests
F1, F» and a subgraph K such that A(K) < 10 and
A(F;) < [(A(G) —9)/2] fori € {1,2}.



Planar Graphs

Theorem 18 (Wang, Hu & Wang | )

Every planar graph G has an edge-decomposition into two forests
F1, F» and a subgraph K such that A(K) < 10 and
A(F;) < [(A(G) —9)/2] fori € {1,2}.

m Using above and Theorem 16, currently the best bound for
planar graphs can be obtained.

Theorem 19 (Wang, Wang & Wang | |)

Let G be a planar graph. Then

i (G) < 2.75A(G) + 18;



Planar Graphs

m Similarly they proved more specific results (together with the
result for outerplanar graphs from Theorem 15)

Theorem 20 (Wang, Wang & Wang | |)

Let G be a planar graph. Then

(a) x5 (G)
(b) x4t(G) <1.5A(G)+ 18, if G has no 4-cycles;
(c) Xst(G) <1 5A( ) + 13, if G has girth at least 5;
(d) xk(G) < 15A(G)+ 3, if G has girth at least 8.

< 2.25A(G) + 6, if G is Ky-minor free;
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Graphs with Bounded mad

m The list version of star edge-coloring was considered in a
number of cases;

m ch/;(G): the list star chromatic index of G;

Theorem 21

Let G be a graph. Then

) chgt( ) <2A(G) —1 ifmad(G) < 7/3 [6];

if mad(G) < 5/2 [6];

+1 ifmad(G) < 8/3 [6];

+2 ifmad(G) < 14/5 [5];
+ 3 ifmad(G) < 3 [5];

(a

(b) ¢
(c < 2A(G
( 2A(G
(

2A(G

d

~— — ~— —

<
<



Planar Graphs

m In [5] and [6] the authors are asking: Is there a constant C
such that for any planar graph G x/,(G) < 2A(G) + C;



Planar Graphs

m In [5] and [6] the authors are asking: Is there a constant C
such that for any planar graph G x/,(G) < 2A(G) + C;

m We are not aware of any example needing 2A colors, in fact,
we believe even the question below has an affirmative answer:

Question 22
Is there a constant C such that for any planar graph G it holds

3
Xa(G) £ 5A(6) + C.



Ha



Subcubic Graphs

m The most analyzed class are subcubic graphs



Subcubic Graphs

m The most analyzed class are subcubic graphs

Theorem 23 (Dvofak, Mohar, Samal | ])
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b) If G is a simple cubic graph, then x',(G) > 4, and the equality
st
holds if and only if G covers the graph of the 3-cube.



Subcubic Graphs

m The most analyzed class are subcubic graphs

Theorem 23 (Dvofak, Mohar, Samal | ])

(a) If G is a subcubic graph, then X, (G) < 7.

b) If G is a simple cubic graph, then x',(G) > 4, and the equality
st
holds if and only if G covers the graph of the 3-cube.

Conjecture 24 (Dvoiak, Mohar, Samal [ ])

If G is a subcubic graph, then x}(G) < 6.



Subcubic Graphs

m Only three known 2-connected graphs needing 6 colors:

K3 Cs Ky+v



Subcubic Graphs

m A number of partial results:

Theorem 25

Let G be a graph with maximum degree 3. Then
(a) x.(G) <5 if G is outerplanar [1];

(b) Xa(6) <5 if mad(G) < 2 [7]
(c) x4(G) <5 ifmad(G) < % (in the list setting!) [4];
(d) x4(G) <6 ifmad(G) < 3 (in the list setting!) [4].
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Is it true that chly(G) < 7 for every subcubic graph G? (Perhaps
even < 67)



Subcubic Graphs - List Version

Question 26 (Dvordk, Mohar, Samal [

Is it true that chly(G) < 7 for every subcubic graph G? (Perhaps
even < 67)

Theorem 27 (BL, Mockovciakova & Soték | |)

For every subcubic graph G, it holds

ch’ (G) < 7.
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Hypercubes

m In Qp, the edges in every dimension / can be divided in two
sets, A; and B; such that the edges in each set are at
distance at least 3;

— Qn = Qn-10K2, 50 x5 (@n) < x5 (Qn-1) +2;
Recursively, X (@n) < x§(Qj) +2(n —j), for any Ji
Easy: xo(Q1) = 1, Xét(Q2) 3, X (Q3) =

Less easy (by computer): . (Qs) = 6, St(Q5)

9 < i (Qe) <10, 10 < x4 (Q7) <12 —» @4 Iooks promising;

Conjecture 28

There is a constant C such that for every positive n

X(Qn) = 2n — Clog(n).
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Open Problems

Question 29 (Dvoidk, Mohar, Samal, 2013)
Is it true that chl(G) = x4 (G) for every graph G?

m Find a method, which can successfully use the fact that a
graph (a) is bipartite, or (b) has large girth;

m |s it true that x/;(G) <5 for all 2-connected subcubic
graphs except a finite number of exceptions?

m s above true at least for bipartite ones? Or the ones with
large girth?
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