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De�nition

Star edge-coloring of a graph G :
→ proper, without bichromatic 4-paths and 4-cycles;

The smallest k for which a star k-edge-coloring of G exists:
→ the star chromatic index of G , χ′st(G );

The name star comes from the vertex version where every
pair of colors induces a star forest;

Initiated by Liu and Deng in 2008 [8].
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χ′
st(K4) = 5
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χ′
st(C5) = 4



What is known?

Almost nothing.

Tight bounds only for graphs of maximum degree at most 2
and trees;

Open for as simple classes as complete graphs, complete

bipartite graphs, hypercubes, outerplanar graphs, cubic
graphs, etc.

Observation 1 (Paths)

For any positive n, χ′st(Pn) = min{3, n − 1}.

Observation 2 (Cycles)

For any positive n 6= 5, χ′st(Cn) = 3; χ′st(C5) = 4.
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Complete Graphs - Upper Bound

Theorem 3 (Dvo°ák, Mohar, �ámal [2])

The star chromatic index of the complete graph Kn satis�es

χ′st(Kn) ≤ n
22
√
2(1+o(1))

√
log n

(log n)1/4
.

In particular, for every ε > 0 there exists a constant c such that
χ′st(Kn) ≤ cn1+ε for every n ≥ 1.

→ using result on the size of a subset of {1,2,. . . ,N} without
3-term arithmetic progression.
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Complete Graphs - Lower Bound

Dvo°ák et al.: χ′st(Kn) ≥ 2n n−1
n+2 ;

Altering argument of Dvo°ák et al. one can show:

Theorem 4 (Bezegová et al., 2013+)

The star chromatic index of the complete graph Kn satis�es

χ′st(Kn) ≥

⌈
3n

n − 1

n + 4

⌉
.

Exact equality (without ceiling) attained for n ∈ {1, 2, 8},
when every color appears same number of times;

It cannot be true for n ∈ {6, 11, 16}, i.e.
χ′st(K6) ≥ 10, χ′st(K11) ≥ 23, χ′st(K16) ≥ 37;

Not (yet) known for n ∈ {26, 56}.
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The Conjecture

No particularly nice conjecture for general graphs, so the
main conjecture is related to complete graphs

Conjecture 5 (Dvo°ák, Mohar, �ámal [2])

The star chromatic index of the complete graph Kn is linear in n,
i.e.,

χ′st(Kn) ∈ O(n).
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Rotational Coloring

Inspired by acyclic edge-coloring of complete graphs;

Procedure:

Label the vertices of Kn = K2`+1 with {0, . . . , 2`};
Take a near matching M of Kn such that

{d(u, v) | uv ∈ M} = {1, 2, . . . , `},

where u < v and d(u, v) = min{v − u, (n − (v − u))};
Color edges of M with 3 colors:

$ : M → {A,B,C}
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Rotational Coloring

Rotate M by i (modulo n), i ∈ {0, 1, . . . , n − 1}:

Mi = {(u + i)(v + i) | uv ∈ M};

Color edges of every Mi :

ϕ : (u + i)(v + i) 7→ (i , $(uv)), uv ∈ M;

ϕ uses 3n colors;

If ϕ is star edge-coloring, we call it
rotational star 3-edge-coloring.
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Rotational Coloring

Proposition 6 (BL, Mockov£iaková, Soták, 2014+)

For every odd n, 1 ≤ n ≤ 19, there is a rotational star
3-edge-coloring of Kn. Moreover, for n = 21, such a coloring does
not exist.

Proposition 6 veri�ed by computer;

For n = 23 currently running;
1515283 matchings satisfying the `spanning' assumption;
39366 possible (promising) colorings of a single matching.
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Rotational Coloring - Examples

K7: 21 colors 0
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Rotational Coloring - Examples
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Rotational Coloring - Examples
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Rotational Coloring - Examples
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Rotational Coloring - Examples
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Rotational Coloring - Examples
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Rotational Coloring

Why rotational approach?

We were hoping for some pattern (which we can observe);

Not the case.

Question 7

Does linear number of colors for star edge-coloring of Kn imply
linear number of colors for rotational star edge-coloring of Kn?

Question 8

Is Conjecture 5 somehow `equivalent' to Perfect One Factorization
Conjecture?
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Complete Bipartite Graphs

Observation 9 (Dvo°ák, Mohar, �ámal [2])

χ′st(Kn,n) ≤ χ′st(Kn) + n.

Proof: color the edges aibi by unique n colors;
color edges aibj , i 6= j , with colors of the edges ij in Kn;

Observation 10 (Dvo°ák, Mohar, �ámal [2])

χ′st(Kn) ≤
dlog

2
ne∑

i=1

2i−1χ′st(Kdn/2ie,dn/2ie).
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Complete Bipartite Graphs

Sketch:

No bichromatic component from two color bundles.
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Computer Assisted Bounds

n χst(Kn,n) χst(Kn)
A304525

1 1 0

2 3 1

3 6 3

4 7 5

5 11 9

6 13 12

7 13 ≤ · ≤ 14 14

8 15 ≤ · ≤ 21 14

9 17 ≤ · ≤ 24 18

10 19 ≤ · ≤ 30 20 ≤ · ≤ 22

https://oeis.org/A304525


General Graphs

Upper bound for general graphs is obtained from the bound

for complete graphs;

Theorem 11 (Dvo°ák, Mohar, �ámal [2])

For a graph G it holds

χ′st(G ) ≤ χ′st(K∆(G)+1) · O
(

log ∆(G )

log log ∆(G )

)2

,

and therefore χ′st(G ) ≤ ∆(G ) · 2O(1)
√

log ∆(G).
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To more sparse graphs...



Trees and Outerplanar Graphs

Theorem 12 (Bezegová et al. [1])

For a tree T it holds

χ′st(T ) ≤

⌊
3∆(T )

2

⌋
.

Using the above result and taking a BFS tree of an
outerplanar graph:

Theorem 13 (Bezegová et al. [1])

For an outerplanar graph G it holds

χ′st(G ) ≤

⌊
3∆(G )

2

⌋
+ 12 .
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Outerplanar Graphs

Conjecture 14 (Bezegová et al. [1])

For an outerplanar graph G it holds

χ′st(G ) ≤

⌊
3∆(G )

2

⌋
+ 1 .

Recent result:

Theorem 15 (Wang, Wang & Wang [11])

For an outerplanar graph G it holds

χ′st(G ) ≤

⌊
3∆(G )

2

⌋
+ 5 .
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Theorem for Minor Closed Graphs

Strong edge-coloring of a graph G : proper edge-coloring
where every three consecutive edges receive di�erent colors;

The smallest k for which a strong k-edge-coloring of G exists
is the strong chromatic index of G , χ′s(G );

Restricted strong edge-coloring of a subgraph H of G :
→ coloring H, satisfying the strong condition in G ; χ′s(H|G ).

Theorem 16 (Wang, Wang & Wang [11])

Let {F ,H} be an edge-partition of a graph G . Then

χ′st(G ) ≤ χ′st(F ) + χ′s(H|G ).
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Planar Graphs

Result for strong edge-coloring:

Theorem 17 (Faudree et al. [3])

For a planar graph G it holds

χ′s(G ) ≤ 4χ′(G ).



Planar Graphs

Proof:

Color edges of G properly: (χ′(G ) colors) → coloring ϕ;

For every color i ∈ {1, . . . , χ′(G )} → Mi edges colored by i ;

G/Mi is planar → 4-vertex-colorable → coloring τi ;

Vertices in G/Mi correspond to edges colored by i ;

Such edges at distance 2 have di�erent colors in G/Mi ;

Coloring e ∈ E (G ) with (ϕ(e), τi (e)) gives strong
edge-coloring with at most χ′(G ) · 4 colors.
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Such edges at distance 2 have di�erent colors in G/Mi ;

Coloring e ∈ E (G ) with (ϕ(e), τi (e)) gives strong
edge-coloring with at most χ′(G ) · 4 colors.



Planar Graphs

Theorem 18 (Wang, Hu & Wang [10])

Every planar graph G has an edge-decomposition into two forests
F1, F2 and a subgraph K such that ∆(K ) ≤ 10 and
∆(Fi ) ≤ d(∆(G )− 9)/2e for i ∈ {1, 2}.

Using above and Theorem 16, currently the best bound for
planar graphs can be obtained.

Theorem 19 (Wang, Wang & Wang [11])

Let G be a planar graph. Then

χ′st(G ) ≤ 2.75∆(G ) + 18;
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Planar Graphs

Similarly they proved more speci�c results (together with the
result for outerplanar graphs from Theorem 15)

Theorem 20 (Wang, Wang & Wang [11])

Let G be a planar graph. Then

(a) χ′st(G ) ≤ 2.25∆(G ) + 6, if G is K4-minor free;

(b) χ′st(G ) ≤ 1.5∆(G ) + 18, if G has no 4-cycles;

(c) χ′st(G ) ≤ 1.5∆(G ) + 13, if G has girth at least 5;

(d) χ′st(G ) ≤ 1.5∆(G ) + 3, if G has girth at least 8.



Graphs with Bounded mad

The list version of star edge-coloring was considered in a
number of cases;

ch′st(G ): the list star chromatic index of G ;

Theorem 21

Let G be a graph. Then

(a) ch′st(G ) ≤ 2∆(G )− 1 if mad(G ) < 7/3 [6];

(b) ch′st(G ) ≤ 2∆(G ) if mad(G ) < 5/2 [6];

(c) ch′st(G ) ≤ 2∆(G ) + 1 if mad(G ) < 8/3 [6];

(d) ch′st(G ) ≤ 2∆(G ) + 2 if mad(G ) < 14/5 [5];

(e) ch′st(G ) ≤ 2∆(G ) + 3 if mad(G ) < 3 [5];
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Planar Graphs

In [5] and [6] the authors are asking: Is there a constant C
such that for any planar graph G χ′st(G ) ≤ 2∆(G ) + C ;

We are not aware of any example needing 2∆ colors, in fact,
we believe even the question below has an a�rmative answer:

Question 22

Is there a constant C such that for any planar graph G it holds

χ′st(G ) ≤ 3

2
∆(G ) + C .
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... and very sparse graphs



Subcubic Graphs

The most analyzed class are subcubic graphs

Theorem 23 (Dvo°ák, Mohar, �ámal [2])

(a) If G is a subcubic graph, then χ′st(G ) ≤ 7.

(b) If G is a simple cubic graph, then χ′st(G ) ≥ 4, and the equality
holds if and only if G covers the graph of the 3-cube.

Conjecture 24 (Dvo°ák, Mohar, �ámal [2])

If G is a subcubic graph, then χ′st(G ) ≤ 6.
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Subcubic Graphs

Only three known 2-connected graphs needing 6 colors:

K3,3 C6 K4 + v



Subcubic Graphs

A number of partial results:

Theorem 25

Let G be a graph with maximum degree 3. Then

(a) χ′st(G ) ≤ 5 if G is outerplanar [1];

(b) χ′st(G ) ≤ 5 if mad(G ) < 12
5 [7];

(c) χ′st(G ) ≤ 5 if mad(G ) < 7
3 (in the list setting!) [4];

(d) χ′st(G ) ≤ 6 if mad(G ) < 5
2 (in the list setting!) [4].



Subcubic Graphs - List Version

Question 26 (Dvo°ák, Mohar, �ámal [2])

Is it true that ch′st(G ) ≤ 7 for every subcubic graph G? (Perhaps
even ≤ 6?)

Theorem 27 (BL, Mockov£iaková & Soták [9])

For every subcubic graph G , it holds

ch′st(G ) ≤ 7.
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Another nice class



Hypercubes

In Qn, the edges in every dimension i can be divided in two
sets, Ai and Bi such that the edges in each set are at

distance at least 3;

→ Qn = Qn−1�K2, so χ
′
st(Qn) ≤ χ′st(Qn−1) + 2;

Recursively, χ′st(Qn) ≤ χ′st(Qj) + 2(n − j), for any j ;

Easy: χ′st(Q1) = 1, χ′st(Q2) = 3, χ′st(Q3) = 4;

Less easy (by computer): χ′st(Q4) = 6, χ′st(Q5) = 8;

9 ≤ χ′st(Q6) ≤ 10, 10 ≤ χ′st(Q7) ≤ 12 → Q7 looks promising;

Conjecture 28

There is a constant C such that for every positive n

χ′st(Qn) = 2n − C log(n).
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Further open problems



Open Problems

Question 29 (Dvo°ák, Mohar, �ámal, 2013)

Is it true that ch′st(G ) = χ′st(G ) for every graph G?

Find a method, which can successfully use the fact that a
graph (a) is bipartite, or (b) has large girth;

Is it true that χ′st(G ) ≤ 5 for all 2-connected subcubic

graphs except a �nite number of exceptions?

Is above true at least for bipartite ones? Or the ones with
large girth?
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