Star Edge-Coloring

Borut Lužar

Faculty of Information Studies, Novo mesto, Slovenia borut.luzar@gmail.com http://luzar.fis.unm.si

Joint work with:

P. Holub, M. Mockovčiaková, R. Soták, L. Šebestová, R. Škrekovski, E. Vojtková

Graphs & Optimization Seminar

April 26, 2019

- Star edge-coloring of a graph G:
 - \rightarrow proper, without bichromatic 4-paths and 4-cycles;

- Star edge-coloring of a graph G:
 - → proper, without bichromatic 4-paths and 4-cycles;
- The smallest k for which a star k-edge-coloring of G exists:
 - \rightarrow the star chromatic index of G, $\chi'_{st}(G)$;

- Star edge-coloring of a graph G:
 - → proper, without bichromatic 4-paths and 4-cycles;
- The smallest k for which a star k-edge-coloring of G exists:
 - \rightarrow the star chromatic index of G, $\chi'_{st}(G)$;
- The name star comes from the vertex version where every pair of colors induces a star forest;

- Star edge-coloring of a graph G:
 - → proper, without bichromatic 4-paths and 4-cycles;
- The smallest k for which a star k-edge-coloring of G exists:
 - \rightarrow the star chromatic index of G, $\chi'_{st}(G)$;
- The name star comes from the vertex version where every pair of colors induces a star forest;
- Initiated by Liu and Deng in 2008 [8].

$$\chi'_{\mathrm{st}}(K_4) = 5$$

$$\chi'_{\rm st}(C_5)=4$$

Almost nothing.

- Almost nothing.
- Tight bounds only for graphs of maximum degree at most 2 and trees;

- Almost nothing.
- Tight bounds only for graphs of maximum degree at most 2 and trees;
- Open for as simple classes as complete graphs, complete bipartite graphs, hypercubes, outerplanar graphs, cubic graphs, etc.

- Almost nothing.
- Tight bounds only for graphs of maximum degree at most 2 and trees;
- Open for as simple classes as complete graphs, complete bipartite graphs, hypercubes, outerplanar graphs, cubic graphs, etc.

Observation 1 (Paths)

For any positive n, $\chi'_{st}(P_n) = \min\{3, n-1\}$.

- Almost nothing.
- Tight bounds only for graphs of maximum degree at most 2 and trees;
- Open for as simple classes as complete graphs, complete bipartite graphs, hypercubes, outerplanar graphs, cubic graphs, etc.

Observation 1 (Paths)

For any positive n, $\chi'_{st}(P_n) = \min\{3, n-1\}$.

Observation 2 (Cycles)

For any positive $n \neq 5$, $\chi'_{st}(C_n) = 3$; $\chi'_{st}(C_5) = 4$.

Complete Graphs - Upper Bound

Theorem 3 (Dvořák, Mohar, Šámal [2])

The star chromatic index of the complete graph K_n satisfies

$$\chi'_{\rm st}(K_n) \le n \frac{2^{2\sqrt{2}(1+o(1))\sqrt{\log n}}}{(\log n)^{1/4}}.$$

In particular, for every $\epsilon > 0$ there exists a constant C such that $\chi'_{\rm st}(K_n) \leq C \, n^{1+\epsilon}$ for every $n \geq 1$.

Complete Graphs - Upper Bound

Theorem 3 (Dvořák, Mohar, Šámal [2])

The star chromatic index of the complete graph K_n satisfies

$$\chi'_{\rm st}(K_n) \le n \frac{2^{2\sqrt{2}(1+o(1))\sqrt{\log n}}}{(\log n)^{1/4}}.$$

In particular, for every $\epsilon > 0$ there exists a constant C such that $\chi'_{\rm st}(K_n) \leq C \, n^{1+\epsilon}$ for every $n \geq 1$.

ightharpoonup using result on the size of a subset of $\{1,2,\ldots,N\}$ without 3-term arithmetic progression.

Complete Graphs - Lower Bound

■ Dvořák et al.: $\chi'_{\rm st}(K_n) \geq 2n \frac{n-1}{n+2}$;

Complete Graphs - Lower Bound

- Dvořák et al.: $\chi'_{st}(K_n) \geq 2n \frac{n-1}{n+2}$;
- Altering argument of Dvořák et al. one can show:

Theorem 4 (Bezegová et al., 2013⁺)

The star chromatic index of the complete graph K_n satisfies

$$\chi'_{\rm st}(K_n) \geq \left[3n \; \frac{n-1}{n+4}\right].$$

Complete Graphs - Lower Bound

- Dvořák et al.: $\chi'_{st}(K_n) \geq 2n \frac{n-1}{n+2}$;
- Altering argument of Dvořák et al. one can show:

Theorem 4 (Bezegová et al., 2013⁺)

The star chromatic index of the complete graph K_n satisfies

$$\chi'_{\rm st}(K_n) \geq \left[3n \; \frac{n-1}{n+4}\right].$$

- Exact equality (without ceiling) attained for $n \in \{1, 2, 8\}$, when every color appears same number of times;
- It cannot be true for $n \in \{6, 11, 16\}$, i.e. $\chi'_{\rm st}(K_6) \ge 10$, $\chi'_{\rm st}(K_{11}) \ge 23$, $\chi'_{\rm st}(K_{16}) \ge 37$;
- Not (yet) known for $n \in \{26, 56\}$.

The Conjecture

■ No particularly nice conjecture for general graphs, so the main conjecture is related to complete graphs

The Conjecture

 No particularly nice conjecture for general graphs, so the main conjecture is related to complete graphs

Conjecture 5 (Dvořák, Mohar, Šámal [2])

The star chromatic index of the complete graph K_n is linear in n, i.e.,

$$\chi'_{\mathrm{st}}(K_n) \in \mathcal{O}(n).$$

Inspired by acyclic edge-coloring of complete graphs;

- Inspired by acyclic edge-coloring of complete graphs;
 Procedure:
- Label the vertices of $K_n = K_{2\ell+1}$ with $\{0, \dots, 2\ell\}$;

- Inspired by acyclic edge-coloring of complete graphs;
 Procedure:
- Label the vertices of $K_n = K_{2\ell+1}$ with $\{0, \dots, 2\ell\}$;
- \blacksquare Take a near matching M of K_n such that

$$\{d(u,v) \mid uv \in M\} = \{1,2,\ldots,\ell\},\$$

where
$$u < v$$
 and $d(u, v) = \min\{v - u, (n - (v - u))\};$

- Inspired by acyclic edge-coloring of complete graphs;
 Procedure:
- Label the vertices of $K_n = K_{2\ell+1}$ with $\{0, \ldots, 2\ell\}$;
- \blacksquare Take a near matching M of K_n such that

$${d(u,v) \mid uv \in M} = {1,2,\ldots,\ell},$$

where
$$u < v$$
 and $d(u, v) = \min\{v - u, (n - (v - u))\};$

Color edges of M with 3 colors:

$$\pi: M \rightarrow \{A, B, C\}$$

■ Rotate M by i (modulo n), $i \in \{0, 1, ..., n-1\}$:

$$M_i = \{(u+i)(v+i) \mid uv \in M\};$$

■ Rotate M by i (modulo n), $i \in \{0, 1, ..., n-1\}$:

$$M_i = \{(u+i)(v+i) \mid uv \in M\};$$

• Color edges of every M_i :

$$\varphi : (u+i)(v+i) \mapsto (i,\pi(uv)), \quad uv \in M;$$

■ Rotate M by i (modulo n), $i \in \{0, 1, ..., n-1\}$:

$$M_i = \{(u+i)(v+i) \mid uv \in M\};$$

• Color edges of every M_i :

$$\varphi : (u+i)(v+i) \mapsto (i,\pi(uv)), \quad uv \in M;$$

 $\blacksquare \varphi$ uses 3n colors;

■ Rotate M by i (modulo n), $i \in \{0, 1, ..., n-1\}$:

$$M_i = \{(u+i)(v+i) \mid uv \in M\};$$

■ Color edges of every M_i :

$$\varphi : (u+i)(v+i) \mapsto (i,\pi(uv)), \quad uv \in M;$$

- $\blacksquare \varphi$ uses 3n colors;
- If φ is star edge-coloring, we call it rotational star 3-edge-coloring.

Proposition 6 (BL, Mockovčiaková, Soták, 2014⁺)

For every odd n, $1 \le n \le 19$, there is a rotational star 3-edge-coloring of K_n . Moreover, for n=21, such a coloring does not exist.

Proposition 6 (BL, Mockovčiaková, Soták, 2014⁺)

For every odd n, $1 \le n \le 19$, there is a rotational star 3-edge-coloring of K_n . Moreover, for n=21, such a coloring does not exist.

Proposition 6 verified by computer;

■ Why rotational approach?

- Why rotational approach?
- We were hoping for some pattern (which we can observe);

- Why rotational approach?
- We were hoping for some pattern (which we can observe);
- Not the case.

- Why rotational approach?
- We were hoping for some pattern (which we can observe);
- Not the case.

Question 7

Does linear number of colors for star edge-coloring of K_n imply linear number of colors for rotational star edge-coloring of K_n ?

Question 8

Is Conjecture 5 somehow 'equivalent' to Perfect One Factorization Conjecture?

Complete Bipartite Graphs

Observation 9 (Dvořák, Mohar, Šámal [2])

$$\chi_{\operatorname{st}}'(K_{n,n}) \leq \chi_{\operatorname{st}}'(K_n) + n.$$

Complete Bipartite Graphs

Observation 9 (Dvořák, Mohar, Šámal [2])

$$\chi'_{\mathrm{st}}(K_{n,n}) \leq \chi'_{\mathrm{st}}(K_n) + n.$$

■ Proof: color the edges a_ib_i by unique n colors;

Complete Bipartite Graphs

Observation 9 (Dvořák, Mohar, Šámal [2])

$$\chi'_{\mathrm{st}}(K_{n,n}) \leq \chi'_{\mathrm{st}}(K_n) + n.$$

■ Proof: color the edges a_ib_i by unique n colors; color edges a_ib_i , $i \neq j$, with colors of the edges ij in K_n ;

Observation 9 (Dvořák, Mohar, Šámal [2])

$$\chi'_{\mathrm{st}}(K_{n,n}) \leq \chi'_{\mathrm{st}}(K_n) + n.$$

■ Proof: color the edges a_ib_i by unique n colors; color edges a_ib_i , $i \neq j$, with colors of the edges ij in K_n ;

Observation 10 (Dvořák, Mohar, Šámal [2])

$$\chi'_{\mathrm{st}}(K_n) \leq \sum_{i=1}^{\lceil \log_2 n \rceil} 2^{i-1} \chi'_{\mathrm{st}}(K_{\lceil n/2^i \rceil, \lceil n/2^i \rceil}).$$

Sketch:

■ No bichromatic component from two color bundles.

Computer Assisted Bounds

n	$\chi_{\mathrm{st}}(K_{n,n})$	$\chi_{\mathrm{st}}(K_n)$ A304525
		A304323
1	1	0
2	3	1
3	6	3
4	7	5
5	11	9
6	13	12
7	14	14
8	15	14
9	$18 \leq \cdot \leq 24$	18
10	19 ≤ ⋅ ≤ 30	$20 \le \cdot \le 22$

General Graphs

 Upper bound for general graphs is obtained from the bound for complete graphs;

General Graphs

 Upper bound for general graphs is obtained from the bound for complete graphs;

Theorem 11 (Dvořák, Mohar, Šámal [2])

For a graph G it holds

$$\chi'_{\mathrm{st}}(G) \leq \chi'_{\mathrm{st}}(\mathcal{K}_{\Delta(G)+1}) \cdot O\left(\frac{\log \Delta(G)}{\log \log \Delta(G)}\right)^2,$$

and therefore
$$\chi'_{\rm st}(G) \leq \Delta(G) \cdot 2^{O(1)\sqrt{\log \Delta(G)}}$$
.

To more sparse graphs...

Trees and Outerplanar Graphs

Theorem 12 (Bezegová et al. [1])

For a tree T it holds

$$\chi'_{\mathrm{st}}(T) \leq \left\lfloor \frac{3\Delta(T)}{2} \right\rfloor.$$

Trees and Outerplanar Graphs

Theorem 12 (Bezegová et al. [1])

For a tree T it holds

$$\chi'_{
m st}(T) \leq \left| rac{3\Delta(T)}{2}
ight|.$$

Using the above result and taking a BFS tree of an outerplanar graph:

Theorem 13 (Bezegová et al. [1])

For an outerplanar graph G it holds

$$\chi'_{\mathrm{st}}(G) \leq \left| \frac{3\Delta(G)}{2} \right| + 12.$$

Outerplanar Graphs

Conjecture 14 (Bezegová et al. [1])

For an outerplanar graph G it holds

$$\chi'_{\mathrm{st}}(G) \leq \left| \frac{3\Delta(G)}{2} \right| + 1.$$

Outerplanar Graphs

Conjecture 14 (Bezegová et al. [1])

For an outerplanar graph G it holds

$$\chi'_{
m st}({\mathcal G}) \leq \left \lfloor rac{3\Delta({\mathcal G})}{2}
ight
floor + 1$$
 .

Recent result:

Theorem 15 (Wang, Wang & Wang [11])

For an outerplanar graph G it holds

$$\chi'_{
m st}(G) \leq \left \lfloor rac{3\Delta(G)}{2}
ight
floor + 5.$$

■ **Strong edge-coloring** of a graph *G*: proper edge-coloring where every three consecutive edges receive different colors;

- Strong edge-coloring of a graph G: proper edge-coloring where every three consecutive edges receive different colors;
- The smallest k for which a strong k-edge-coloring of G exists is the strong chromatic index of G, $\chi'_{s}(G)$;

- Strong edge-coloring of a graph G: proper edge-coloring where every three consecutive edges receive different colors;
- The smallest k for which a strong k-edge-coloring of G exists is the strong chromatic index of G, $\chi'_{s}(G)$;
- Restricted strong edge-coloring of a subgraph H of G: \rightarrow coloring H, satisfying the strong condition in G; $\chi'_s(H|_G)$.

- Strong edge-coloring of a graph G: proper edge-coloring where every three consecutive edges receive different colors;
- The smallest k for which a strong k-edge-coloring of G exists is the strong chromatic index of G, $\chi'_{s}(G)$;
- Restricted strong edge-coloring of a subgraph H of G: \rightarrow coloring H, satisfying the strong condition in G; $\chi'_s(H|_G)$.

Theorem 16 (Wang, Wang & Wang [11])

Let $\{F, H\}$ be an edge-partition of a graph G. Then

$$\chi'_{\mathrm{st}}(G) \leq \chi'_{\mathrm{st}}(F) + \chi'_{s}(H|_{G}).$$

■ Result for **strong** edge-coloring:

Theorem 17 (Faudree et al. [3])

For a planar graph G it holds

$$\chi'_{s}(G) \leq 4\chi'(G).$$

Proof:

■ Color edges of G properly: $(\chi'(G) \text{ colors}) \rightarrow \text{coloring } \varphi$;

- Color edges of G properly: $(\chi'(G) \text{ colors}) \rightarrow \text{coloring } \varphi$;
- For every color $i \in \{1, ..., \chi'(G)\} \rightarrow M_i$ edges colored by i;

- Color edges of G properly: $(\chi'(G) \text{ colors}) \rightarrow \text{coloring } \varphi$;
- For every color $i \in \{1, ..., \chi'(G)\} \rightarrow M_i$ edges colored by i;
- G/M_i is planar \rightarrow 4-vertex-colorable \rightarrow coloring τ_i ;

- Color edges of G properly: $(\chi'(G) \text{ colors}) \rightarrow \text{coloring } \varphi$;
- For every color $i \in \{1, ..., \chi'(G)\} \rightarrow M_i$ edges colored by i;
- G/M_i is planar \rightarrow 4-vertex-colorable \rightarrow coloring τ_i ;
- Vertices in G/M_i correspond to edges colored by i;

- Color edges of G properly: $(\chi'(G) \text{ colors}) \rightarrow \text{coloring } \varphi$;
- For every color $i \in \{1, ..., \chi'(G)\} \rightarrow M_i$ edges colored by i;
- G/M_i is planar \rightarrow 4-vertex-colorable \rightarrow coloring τ_i ;
- Vertices in G/M_i correspond to edges colored by i;
- Such edges at distance 2 have different colors in G/M_i ;

- Color edges of G properly: $(\chi'(G) \text{ colors}) \rightarrow \text{coloring } \varphi$;
- For every color $i \in \{1, ..., \chi'(G)\} \rightarrow M_i$ edges colored by i;
- G/M_i is planar \rightarrow 4-vertex-colorable \rightarrow coloring τ_i ;
- Vertices in G/M_i correspond to edges colored by i;
- Such edges at distance 2 have different colors in G/M_i ;
- Coloring $e \in E(G)$ with $(\varphi(e), \tau_i(e))$ gives strong edge-coloring with at most $\chi'(G) \cdot 4$ colors.

Theorem 18 (Wang, Hu & Wang [10])

Every planar graph G has an edge-decomposition into two forests F_1 , F_2 and a subgraph K such that $\Delta(K) \leq 10$ and $\Delta(F_i) \leq \lceil (\Delta(G) - 9)/2 \rceil$ for $i \in \{1, 2\}$.

Theorem 18 (Wang, Hu & Wang [10])

Every planar graph G has an edge-decomposition into two forests F_1 , F_2 and a subgraph K such that $\Delta(K) \leq 10$ and $\Delta(F_i) \leq \lceil (\Delta(G) - 9)/2 \rceil$ for $i \in \{1, 2\}$.

Using above and Theorem 16, currently the best bound for planar graphs can be obtained.

Theorem 19 (Wang, Wang & Wang [11])

Let G be a planar graph. Then

$$\chi'_{\rm st}(G) \leq 2.75\Delta(G) + 18;$$

 Similarly they proved more specific results (together with the result for outerplanar graphs from Theorem 15)

Theorem 20 (Wang, Wang & Wang [11])

Let G be a planar graph. Then

- (a) $\chi'_{\rm st}(G) \leq 2.25\Delta(G) + 6$, if G is K_4 -minor free;
- (b) $\chi'_{\rm st}(G) \leq 1.5\Delta(G) + 18$, if G has no 4-cycles;
- (c) $\chi'_{\rm st}(G) \leq 1.5\Delta(G) + 13$, if G has girth at least 5;
- (d) $\chi'_{\rm st}(G) \leq 1.5\Delta(G) + 3$, if G has girth at least 8.

Graphs with Bounded mad

 The list version of star edge-coloring was considered in a number of cases;

Graphs with Bounded mad

- The list version of star edge-coloring was considered in a number of cases;
- \bullet ch'_{st}(G): the list star chromatic index of G;

Graphs with Bounded mad

- The list version of star edge-coloring was considered in a number of cases;

Theorem 21

Let G be a graph. Then

- (a) $ch'_{st}(G) \le 2\Delta(G) 1$ if mad(G) < 7/3 [6];
- (b) $\mathrm{ch}'_{\mathrm{st}}(G) \leq 2\Delta(G) \text{ if } \mathrm{mad}(G) < 5/2 \text{ [6]};$
- (c) $ch'_{st}(G) \le 2\Delta(G) + 1$ if mad(G) < 8/3 [6];
- (d) $\mathrm{ch}'_{\mathrm{st}}(G) \leq 2\Delta(G) + 2 \ \text{if } \mathrm{mad}(G) < 14/5 \ \text{[5]};$
- (e) $ch'_{st}(G) \le 2\Delta(G) + 3 \text{ if } mad(G) < 3 [5];$

■ In [5] and [6] the authors are asking: Is there a constant C such that for any planar graph G $\chi'_{\rm st}(G) \leq 2\Delta(G) + C$;

- In [5] and [6] the authors are asking: Is there a constant C such that for any planar graph G $\chi'_{\text{st}}(G) \leq 2\Delta(G) + C$;
- We are not aware of any example needing 2Δ colors, in fact, we believe even the question below has an affirmative answer:

Question 22

Is there a constant C such that for any planar graph G it holds

$$\chi'_{\mathrm{st}}(G) \leq \frac{3}{2}\Delta(G) + C.$$

... and very sparse graphs

Subcubic Graphs

■ The most analyzed class are subcubic graphs

Subcubic Graphs

■ The most analyzed class are subcubic graphs

Theorem 23 (Dvořák, Mohar, Šámal [2])

- (a) If G is a subcubic graph, then $\chi'_{\rm st}(G) \leq 7$.
- (b) If G is a simple cubic graph, then $\chi'_{\rm st}(G) \geq$ 4, and the equality holds if and only if G covers the graph of the 3-cube.

Subcubic Graphs

■ The most analyzed class are subcubic graphs

Theorem 23 (Dvořák, Mohar, Šámal [2])

- (a) If G is a subcubic graph, then $\chi'_{\rm st}(G) \leq 7$.
- (b) If G is a simple cubic graph, then $\chi'_{\rm st}(G) \geq$ 4, and the equality holds if and only if G covers the graph of the 3-cube.

Conjecture 24 (Dvořák, Mohar, Šámal [2])

If G is a subcubic graph, then $\chi'_{\rm st}(G) \leq 6$.

Subcubic Graphs

■ Only three known 2-connected graphs needing 6 colors:

Subcubic Graphs

A number of partial results:

Theorem 25

Let G be a graph with maximum degree 3. Then

- (a) $\chi'_{\rm st}(G) \leq 5$ if G is outerplanar [1];
- (b) $\chi'_{st}(G) \leq 5 \text{ if } mad(G) < \frac{12}{5}$ [7];
- (c) $\chi'_{\rm st}(G) \leq 5$ if ${\rm mad}(G) < \frac{7}{3}$ (in the list setting!) [4];
- (d) $\chi'_{\mathrm{st}}(G) \leq 6$ if $\mathrm{mad}(G) < \frac{5}{2}$ (in the list setting!) [4].

Subcubic Graphs - List Version

Question 26 (Dvořák, Mohar, Šámal [2])

Is it true that $\mathrm{ch}'_{\mathrm{st}}(G) \leq 7$ for every subcubic graph G? (Perhaps even $\leq 6?)$

Subcubic Graphs - List Version

Question 26 (Dvořák, Mohar, Šámal [2])

Is it true that $\mathrm{ch}'_{\mathrm{st}}(G) \leq 7$ for every subcubic graph G? (Perhaps even $\leq 6?)$

Theorem 27 (BL, Mockovčiaková & Soták [9])

For every subcubic graph G, it holds

$$\operatorname{ch}'_{\operatorname{st}}(G) \leq 7.$$

Another nice class

■ In Q_n , the edges in every dimension i can be divided in two sets, A_i and B_i such that the edges in each set are at distance at least 3;

- In Q_n , the edges in every dimension i can be divided in two sets, A_i and B_i such that the edges in each set are at distance at least 3;
- lacksquare ightarrow $Q_n=Q_{n-1}\square \mathcal{K}_2$, so $\chi_{
 m st}'(Q_n)\leq \chi_{
 m st}'(Q_{n-1})+2$;

- In Q_n, the edges in every dimension i can be divided in two sets, A_i and B_i such that the edges in each set are at distance at least 3;
- lacksquare ightarrow $Q_n=Q_{n-1}\square \mathcal{K}_2$, so $\chi_{
 m st}'(Q_n)\leq \chi_{
 m st}'(Q_{n-1})+2$;
- Recursively, $\chi'_{\rm st}(Q_n) \leq \chi'_{\rm st}(Q_j) + 2(n-j)$, for any j;

- In Q_n, the edges in every dimension i can be divided in two sets, A_i and B_i such that the edges in each set are at distance at least 3;
- lacksquare ightarrow $Q_n=Q_{n-1}\square \mathcal{K}_2$, so $\chi_{
 m st}'(Q_n)\leq \chi_{
 m st}'(Q_{n-1})+2$;
- Recursively, $\chi'_{\rm st}(Q_n) \leq \chi'_{\rm st}(Q_j) + 2(n-j)$, for any j;
- Easy: $\chi'_{\mathrm{st}}(Q_1) = 1$, $\chi'_{\mathrm{st}}(Q_2) = 3$, $\chi'_{\mathrm{st}}(Q_3) = 4$;

- In Q_n, the edges in every dimension i can be divided in two sets, A_i and B_i such that the edges in each set are at distance at least 3;
- lacksquare ightarrow $Q_n=Q_{n-1}\square \mathcal{K}_2$, so $\chi_{
 m st}'(Q_n)\leq \chi_{
 m st}'(Q_{n-1})+2$;
- Recursively, $\chi'_{\rm st}(Q_n) \leq \chi'_{\rm st}(Q_j) + 2(n-j)$, for any j;
- Easy: $\chi'_{st}(Q_1) = 1$, $\chi'_{st}(Q_2) = 3$, $\chi'_{st}(Q_3) = 4$;
- Less easy (by computer): $\chi'_{\rm st}(Q_4)=6$, $\chi'_{\rm st}(Q_5)=8$;

- In Q_n, the edges in every dimension i can be divided in two sets, A_i and B_i such that the edges in each set are at distance at least 3;
- lacksquare ightarrow $Q_n=Q_{n-1}\square \mathcal{K}_2$, so $\chi_{
 m st}'(Q_n)\leq \chi_{
 m st}'(Q_{n-1})+2$;
- Recursively, $\chi'_{\rm st}(Q_n) \leq \chi'_{\rm st}(Q_j) + 2(n-j)$, for any j;
- Easy: $\chi'_{st}(Q_1) = 1$, $\chi'_{st}(Q_2) = 3$, $\chi'_{st}(Q_3) = 4$;
- Less easy (by computer): $\chi'_{\rm st}(Q_4)=6$, $\chi'_{\rm st}(Q_5)=8$;
- $= 9 \le \chi'_{\mathrm{st}}(Q_6) \le 10, \ 10 \le \chi'_{\mathrm{st}}(Q_7) \le 12$

- In Q_n, the edges in every dimension i can be divided in two sets, A_i and B_i such that the edges in each set are at distance at least 3;
- lacksquare ightarrow $Q_n=Q_{n-1}\square \mathcal{K}_2$, so $\chi_{
 m st}'(Q_n)\leq \chi_{
 m st}'(Q_{n-1})+2$;
- Recursively, $\chi'_{\rm st}(Q_n) \leq \chi'_{\rm st}(Q_j) + 2(n-j)$, for any j;
- lacksquare Easy: $\chi'_{
 m st}(Q_1)=1$, $\chi'_{
 m st}(Q_2)=3$, $\chi'_{
 m st}(Q_3)=4$;
- Less easy (by computer): $\chi'_{\rm st}(Q_4)=6$, $\chi'_{\rm st}(Q_5)=8$;
- ullet 9 $\leq \chi'_{
 m st}(Q_6) \leq$ 10, 10 $\leq \chi'_{
 m st}(Q_7) \leq$ 12 o Q_7 looks promising;

- In Q_n, the edges in every dimension i can be divided in two sets, A_i and B_i such that the edges in each set are at distance at least 3;
- lacksquare ightarrow $Q_n=Q_{n-1}\square \mathcal{K}_2$, so $\chi_{
 m st}'(Q_n)\leq \chi_{
 m st}'(Q_{n-1})+2$;
- Recursively, $\chi'_{\rm st}(Q_n) \leq \chi'_{\rm st}(Q_j) + 2(n-j)$, for any j;
- Easy: $\chi'_{st}(Q_1) = 1$, $\chi'_{st}(Q_2) = 3$, $\chi'_{st}(Q_3) = 4$;
- Less easy (by computer): $\chi'_{\rm st}(Q_4)=6$, $\chi'_{\rm st}(Q_5)=8$;
- ullet 9 $\leq \chi'_{
 m st}(Q_6) \leq$ 10, 10 $\leq \chi'_{
 m st}(Q_7) \leq$ 12 o Q_7 looks promising;

Conjecture 28

There is a constant C such that for every positive n

$$\chi'_{\rm st}(Q_n) = 2n - C\log(n).$$

Further open problems

Question 29 (Dvořák, Mohar, Šámal, 2013)

Is it true that $\mathrm{ch}'_{\mathrm{st}}(G) = \chi'_{\mathrm{st}}(G)$ for every graph G?

Question 29 (Dvořák, Mohar, Šámal, 2013)

Is it true that $\operatorname{ch}'_{\operatorname{st}}(G) = \chi'_{\operatorname{st}}(G)$ for every graph G?

■ Find a method, which can successfully use the fact that a graph (a) is bipartite,

Question 29 (Dvořák, Mohar, Šámal, 2013)

Is it true that $\operatorname{ch}'_{\operatorname{st}}(G) = \chi'_{\operatorname{st}}(G)$ for every graph G?

■ Find a method, which can successfully use the fact that a graph (a) is bipartite, or (b) has large girth;

Question 29 (Dvořák, Mohar, Šámal, 2013)

Is it true that $\operatorname{ch}'_{\operatorname{st}}(G) = \chi'_{\operatorname{st}}(G)$ for every graph G?

- Find a method, which can successfully use the fact that a graph (a) is bipartite, or (b) has large girth;
- Is it true that $\chi'_{\rm st}(G) \le 5$ for all 2-connected subcubic graphs except a finite number of exceptions?

Question 29 (Dvořák, Mohar, Šámal, 2013)

Is it true that $\operatorname{ch}'_{\operatorname{st}}(G)=\chi'_{\operatorname{st}}(G)$ for every graph G?

- Find a method, which can successfully use the fact that a graph (a) is bipartite, or (b) has large girth;
- Is it true that $\chi'_{\rm st}(G) \leq 5$ for all 2-connected subcubic graphs except a finite number of exceptions?
- Is above true at least for bipartite ones? Or the ones with large girth?

Merci!

Bezegová, L., Lužar, B., Mockovčiaková, M., Soták, R., and Škrekovski, R.

Star edge coloring of some classes of graphs.

J. Graph Theory 81 (2016), 73-82.

Dvořák, Z., Mohar, B., and Šámal, R.

Star chromatic index.

J. Graph Theory 72 (2013), 313-326.

Faudree, R. J., Gyárfás, A., Schelp, R. H., and Tuza, Z.

The strong chromatic index of graphs.

Ars Combin. 29B (1990), 205-211.

- Kerdjoudj, S., Kostochka, A., and Raspaud, A. List star edge-coloring of subcubic graphs. Discuss. Math. Graph Theory 38 (2018), 1037–1054.
- Kerdjoudj, S., Pradeep, K., and Raspaud, A. List star chromatic index of sparse graphs. Discrete Math. 341 (2018), 1835–1849.
- Kerdjoudj, S., and Raspaud, A.
 List star edge coloring of sparse graphs.

 Discrete Appl. Math. 238 (2018), 115–125.
- Lei, H., Shi, Y., Song, Z.-X., and Wang, T. Star 5-edge-colorings of subcubic multigraphs. *Discrete Math. 341* (2018), 950–956.

Liu, X.-S., and Deng, K.

An upper bound on the star chromatic index of graphs with $\Delta > 7$.

J. Lanzhou Univ. (Nat. Sci.) 44 (2008), 94-95.

Lužar, B., Mockovčiaková, M., and Soták, R.

Note on list star edge-coloring of subcubic graphs.

J. Graph Theory 90, 3 (2019), 304-310,

Wang, Y., Hu, X., and Wang, W.

A note on the linear 2-arboricity of planar graphs.

Discrete Math. 340 (2017), 1449-1455.

Wang, Y., Wang, W., and Wang, Y.

Edge-partition and star chromatic index.

Appl. Math. Comput. 333 (2018), 480–489.