Star Edge-Coloring

Borut Lužar

Faculty of Information Studies, Novo mesto, Slovenia
borut.luzar@gmail.com http://luzar.fis.unm.si

Joint work with:
P. Holub, M. Mockovčiaková, R. Soták,
L. Šebestová, R. Škrekovski, E. Vojtková

Graphs \& Optimization Seminar

April 26, 2019

Definition

- Star edge-coloring of a graph G:
\rightarrow proper, without bichromatic 4-paths and 4-cycles;

Definition

- Star edge-coloring of a graph G:
\rightarrow proper, without bichromatic 4-paths and 4-cycles;
- The smallest k for which a star k-edge-coloring of G exists: \rightarrow the star chromatic index of $G, \chi_{\mathrm{st}}^{\prime}(G)$;

Definition

- Star edge-coloring of a graph G:
\rightarrow proper, without bichromatic 4-paths and 4-cycles;
- The smallest k for which a star k-edge-coloring of G exists: \rightarrow the star chromatic index of $G, \chi_{\text {st }}^{\prime}(G)$;
- The name star comes from the vertex version where every pair of colors induces a star forest;

Definition

- Star edge-coloring of a graph G:
\rightarrow proper, without bichromatic 4-paths and 4-cycles;
- The smallest k for which a star k-edge-coloring of G exists: \rightarrow the star chromatic index of $G, \chi_{\text {st }}^{\prime}(G)$;
- The name star comes from the vertex version where every pair of colors induces a star forest;
- Initiated by Liu and Deng in 2008 [8].
K

$$
\star
$$

X

$$
\bowtie
$$

$$
\star
$$

$$
\ltimes
$$

Example

$\chi_{\mathrm{st}}^{\prime}\left(K_{4}\right)=5$

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example

$$
\chi_{\mathrm{st}}^{\prime}\left(C_{5}\right)=4
$$

What is known?

What is known?

- Almost nothing.

What is known?

- Almost nothing.
- Tight bounds only for graphs of maximum degree at most 2 and trees;

What is known?

- Almost nothing.
- Tight bounds only for graphs of maximum degree at most 2 and trees;
- Open for as simple classes as complete graphs, complete bipartite graphs, hypercubes, outerplanar graphs, cubic graphs, etc.

What is known?

- Almost nothing.
- Tight bounds only for graphs of maximum degree at most 2 and trees;
- Open for as simple classes as complete graphs, complete bipartite graphs, hypercubes, outerplanar graphs, cubic graphs, etc.

Observation 1 (Paths)

For any positive $n, \chi_{\mathrm{st}}^{\prime}\left(P_{n}\right)=\min \{3, n-1\}$.

What is known?

- Almost nothing.
- Tight bounds only for graphs of maximum degree at most 2 and trees;
- Open for as simple classes as complete graphs, complete bipartite graphs, hypercubes, outerplanar graphs, cubic graphs, etc.

Observation 1 (Paths)
For any positive $n, \chi_{\mathrm{st}}^{\prime}\left(P_{n}\right)=\min \{3, n-1\}$.

Observation 2 (Cycles)
For any positive $n \neq 5, \chi_{\mathrm{st}}^{\prime}\left(C_{n}\right)=3 ; \chi_{\mathrm{st}}^{\prime}\left(C_{5}\right)=4$.

Complete Graphs - Upper Bound

Theorem 3 (Dvořák, Mohar, Šámal [2])

The star chromatic index of the complete graph K_{n} satisfies

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \leq n \frac{2^{2 \sqrt{2}(1+o(1)) \sqrt{\log n}}}{(\log n)^{1 / 4}}
$$

In particular, for every $\epsilon>0$ there exists a constant C such that $\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \leq C n^{1+\epsilon}$ for every $n \geq 1$.

Complete Graphs - Upper Bound

Theorem 3 (Dvořák, Mohar, Šámal [2])

The star chromatic index of the complete graph K_{n} satisfies

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \leq n \frac{2^{2 \sqrt{2}(1+o(1)) \sqrt{\log n}}}{(\log n)^{1 / 4}}
$$

In particular, for every $\epsilon>0$ there exists a constant C such that $\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \leq C n^{1+\epsilon}$ for every $n \geq 1$.
$■ \rightarrow$ using result on the size of a subset of $\{1,2, \ldots, N\}$ without 3-term arithmetic progression.

Complete Graphs - Lower Bound

- Dvořák et al.: $\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \geq 2 n \frac{n-1}{n+2}$;

Complete Graphs - Lower Bound

- Dvořák et al.: $\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \geq 2 n \frac{n-1}{n+2}$;
- Altering argument of Dvoŕák et al. one can show:

Theorem 4 (Bezegová et al., 2013+)
The star chromatic index of the complete graph K_{n} satisfies

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \geq\left\lceil 3 n \frac{n-1}{n+4}\right\rceil
$$

Complete Graphs - Lower Bound

- Dvořák et al.: $\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \geq 2 n \frac{n-1}{n+2}$;
- Altering argument of Dvořák et al. one can show:

Theorem 4 (Bezegová et al., 2013 ${ }^{+}$)

The star chromatic index of the complete graph K_{n} satisfies

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \geq\left\lceil 3 n \frac{n-1}{n+4}\right\rceil
$$

- Exact equality (without ceiling) attained for $n \in\{1,2,8\}$, when every color appears same number of times;
■ It cannot be true for $n \in\{6,11,16\}$, i.e.
$\chi_{\mathrm{st}}^{\prime}\left(K_{6}\right) \geq 10, \chi_{\mathrm{st}}^{\prime}\left(K_{11}\right) \geq 23, \chi_{\mathrm{st}}^{\prime}\left(K_{16}\right) \geq 37$;
■ Not (yet) known for $n \in\{26,56\}$.

The Conjecture

- No particularly nice conjecture for general graphs, so the main conjecture is related to complete graphs

The Conjecture

- No particularly nice conjecture for general graphs, so the main conjecture is related to complete graphs

Conjecture 5 (Dvořák, Mohar, Šámal [2])

The star chromatic index of the complete graph K_{n} is linear in n, i.e.,

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \in \mathcal{O}(n)
$$

Rotational Coloring

■ Inspired by acyclic edge-coloring of complete graphs;

Rotational Coloring

■ Inspired by acyclic edge-coloring of complete graphs; Procedure:
■ Label the vertices of $K_{n}=K_{2 \ell+1}$ with $\{0, \ldots, 2 \ell\}$;

Rotational Coloring

■ Inspired by acyclic edge-coloring of complete graphs; Procedure:

- Label the vertices of $K_{n}=K_{2 \ell+1}$ with $\{0, \ldots, 2 \ell\}$;
- Take a near matching M of K_{n} such that

$$
\{d(u, v) \mid u v \in M\}=\{1,2, \ldots, \ell\}
$$

where $u<v$ and $d(u, v)=\min \{v-u,(n-(v-u))\}$;

Rotational Coloring

- Inspired by acyclic edge-coloring of complete graphs; Procedure:
■ Label the vertices of $K_{n}=K_{2 \ell+1}$ with $\{0, \ldots, 2 \ell\}$;
- Take a near matching M of K_{n} such that

$$
\{d(u, v) \mid u v \in M\}=\{1,2, \ldots, \ell\}
$$

where $u<v$ and $d(u, v)=\min \{v-u,(n-(v-u))\}$;

- Color edges of M with 3 colors:

$$
\pi: M \rightarrow\{A, B, C\}
$$

Rotational Coloring

- Rotate M by i (modulo n), $i \in\{0,1, \ldots, n-1\}$:

$$
M_{i}=\{(u+i)(v+i) \mid u v \in M\} ;
$$

Rotational Coloring

- Rotate M by i (modulo n), $i \in\{0,1, \ldots, n-1\}$:

$$
M_{i}=\{(u+i)(v+i) \mid u v \in M\} ;
$$

■ Color edges of every M_{i} :

$$
\varphi:(u+i)(v+i) \mapsto(i, \pi(u v)), \quad u v \in M
$$

Rotational Coloring

- Rotate M by i (modulo n), $i \in\{0,1, \ldots, n-1\}$:

$$
M_{i}=\{(u+i)(v+i) \mid u v \in M\} ;
$$

- Color edges of every M_{i} :

$$
\varphi:(u+i)(v+i) \mapsto(i, \pi(u v)), \quad u v \in M
$$

- φ uses $3 n$ colors;

Rotational Coloring

■ Rotate M by i (modulo n), $i \in\{0,1, \ldots, n-1\}$:

$$
M_{i}=\{(u+i)(v+i) \mid u v \in M\} ;
$$

- Color edges of every M_{i} :

$$
\varphi:(u+i)(v+i) \mapsto(i, \pi(u v)), \quad u v \in M
$$

- φ uses $3 n$ colors;
- If φ is star edge-coloring, we call it rotational star 3-edge-coloring.

Rotational Coloring

Proposition 6 (BL, Mockovčiaková, Soták, 2014 ${ }^{+}$)

For every odd $n, 1 \leq n \leq 19$, there is a rotational star 3 -edge-coloring of K_{n}. Moreover, for $n=21$, such a coloring does not exist.

Rotational Coloring

Proposition 6 (BL, Mockovčiaková, Soták, 2014 ${ }^{+}$)

For every odd $n, 1 \leq n \leq 19$, there is a rotational star 3 -edge-coloring of K_{n}. Moreover, for $n=21$, such a coloring does not exist.

- Proposition 6 verified by computer;

Rotational Coloring - Examples

- $K_{7}: 21$ colors

Rotational Coloring - Examples

- $K_{7}: 21$ colors

Rotational Coloring - Examples

- $K_{7}: 21$ colors

0

Rotational Coloring - Examples

- $K_{7}: 21$ colors

Rotational Coloring - Examples

- $K_{7}: 21$ colors

Rotational Coloring - Examples

- $K_{7}: 21$ colors

Rotational Coloring - Examples

- $K_{7}: 21$ colors

0

Rotational Coloring - Examples

- $K_{7}: 21$ colors

0

Rotational Coloring - Examples

- $K_{7}: 21$ colors

Rotational Coloring - Examples

- $K_{9}: 27$ colors

Rotational Coloring - Examples

- $K_{11}: 33$ colors

Rotational Coloring - Examples

- $K_{13}: 39$ colors

Rotational Coloring - Examples

- $K_{15}: 45$ colors

Rotational Coloring - Examples

- $K_{17}: 51$ colors

Rotational Coloring - Examples

- $K_{19}: 57$ colors

Rotational Coloring

■ Why rotational approach?

Rotational Coloring

■ Why rotational approach?

- We were hoping for some pattern (which we can observe);

Rotational Coloring

■ Why rotational approach?

- We were hoping for some pattern (which we can observe);

■ Not the case.

Rotational Coloring

■ Why rotational approach?

- We were hoping for some pattern (which we can observe);
- Not the case.

Question 7

Does linear number of colors for star edge-coloring of K_{n} imply linear number of colors for rotational star edge-coloring of K_{n} ?

Question 8

Is Conjecture 5 somehow 'equivalent' to Perfect One Factorization Conjecture?

Complete Bipartite Graphs

Observation 9 (Dvořák, Mohar, Šámal [])

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n, n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(K_{n}\right)+n .
$$

Complete Bipartite Graphs

Observation 9 (Dvořák, Mohar, Šámal [])

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n, n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(K_{n}\right)+n .
$$

■ Proof: color the edges $a_{i} b_{i}$ by unique n colors;

Complete Bipartite Graphs

Observation 9 (Dvořák, Mohar, Šámal []])

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n, n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(K_{n}\right)+n .
$$

■ Proof: color the edges $a_{i} b_{i}$ by unique n colors; color edges $a_{i} b_{j}, i \neq j$, with colors of the edges $i j$ in K_{n};

Complete Bipartite Graphs

Observation 9 (Dvořák, Mohar, Šámal [] $)$

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n, n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(K_{n}\right)+n .
$$

- Proof: color the edges $a_{i} b_{i}$ by unique n colors; color edges $a_{i} b_{j}, i \neq j$, with colors of the edges $i j$ in K_{n};

Observation 10 (Dvořák, Mohar, Šámal [2])

$$
\chi_{\mathrm{st}}^{\prime}\left(K_{n}\right) \leq \sum_{i=1}^{\left\lceil\log _{2} n\right\rceil} 2^{i-1} \chi_{\mathrm{st}}^{\prime}\left(K_{\left\lceil n / 2^{i}\right\rceil,\left\lceil n / 2^{i}\right\rceil}\right) .
$$

Complete Bipartite Graphs

■ Sketch:

Complete Bipartite Graphs

■ Sketch:

Complete Bipartite Graphs

■ Sketch:

Complete Bipartite Graphs

■ Sketch:

Complete Bipartite Graphs

■ Sketch:

- No bichromatic component from two color bundles.

Computer Assisted Bounds

n	$\chi_{\mathrm{st}}\left(K_{n, n}\right)$	$\chi_{\mathrm{st}}\left(K_{n}\right)$ A304525
1	1	0
2	3	1
3	6	3
4	7	5
5	11	9
6	13	12
7	14	14
8	15	14
9	$18 \leq \cdot \leq 24$	18
10	$19 \leq \cdot \leq 30$	$20 \leq \cdot \leq 22$

General Graphs

- Upper bound for general graphs is obtained from the bound for complete graphs;

General Graphs

■ Upper bound for general graphs is obtained from the bound for complete graphs;

Theorem 11 (Dvořák, Mohar, Šámal [2])
For a graph G it holds

$$
\chi_{\mathrm{st}}^{\prime}(G) \leq \chi_{\mathrm{st}}^{\prime}\left(K_{\Delta(G)+1}\right) \cdot O\left(\frac{\log \Delta(G)}{\log \log \Delta(G)}\right)^{2}
$$

and therefore $\chi_{\mathrm{st}}^{\prime}(G) \leq \Delta(G) \cdot 2^{O(1)} \sqrt{\log \Delta(G)}$.

To more sparse graphs...

Trees and Outerplanar Graphs

Theorem 12 (Bezegová et al. [1])
For a tree T it holds

$$
\chi_{\mathrm{st}}^{\prime}(T) \leq\left\lfloor\frac{3 \Delta(T)}{2}\right\rfloor
$$

Trees and Outerplanar Graphs

Theorem 12 (Bezegová et al. [] $)$
For a tree T it holds

$$
\chi_{\mathrm{st}}^{\prime}(T) \leq\left\lfloor\frac{3 \Delta(T)}{2}\right\rfloor
$$

- Using the above result and taking a BFS tree of an outerplanar graph:
Theorem 13 (Bezegová et al. [1])
For an outerplanar graph G it holds

$$
\chi_{\mathrm{st}}^{\prime}(G) \leq\left\lfloor\frac{3 \Delta(G)}{2}\right\rfloor+12 .
$$

Outerplanar Graphs

Conjecture 14 (Bezegová et al. [1])

For an outerplanar graph G it holds

$$
\chi_{\mathrm{st}}^{\prime}(G) \leq\left\lfloor\frac{3 \Delta(G)}{2}\right\rfloor+1
$$

Outerplanar Graphs

Conjecture 14 (Bezegová et al. [1])

For an outerplanar graph G it holds

$$
\chi_{\mathrm{st}}^{\prime}(G) \leq\left\lfloor\frac{3 \Delta(G)}{2}\right\rfloor+1 .
$$

- Recent result:

Theorem 15 (Wang, Wang \& Wang [1])
For an outerplanar graph G it holds

$$
\chi_{\mathrm{st}}^{\prime}(G) \leq\left\lfloor\frac{3 \Delta(G)}{2}\right\rfloor+5 .
$$

Theorem for Minor Closed Graphs

■ Strong edge-coloring of a graph G: proper edge-coloring where every three consecutive edges receive different colors;

Theorem for Minor Closed Graphs

■ Strong edge-coloring of a graph G : proper edge-coloring where every three consecutive edges receive different colors;

- The smallest k for which a strong k-edge-coloring of G exists is the strong chromatic index of $G, \chi_{s}^{\prime}(G)$;

Theorem for Minor Closed Graphs

■ Strong edge-coloring of a graph G : proper edge-coloring where every three consecutive edges receive different colors;

- The smallest k for which a strong k-edge-coloring of G exists is the strong chromatic index of $G, \chi_{s}^{\prime}(G)$;
- Restricted strong edge-coloring of a subgraph H of G : \rightarrow coloring H, satisfying the strong condition in $G ; \chi_{s}^{\prime}\left(\left.H\right|_{G}\right)$.

Theorem for Minor Closed Graphs

■ Strong edge-coloring of a graph G : proper edge-coloring where every three consecutive edges receive different colors;

- The smallest k for which a strong k-edge-coloring of G exists is the strong chromatic index of $G, \chi_{s}^{\prime}(G)$;
- Restricted strong edge-coloring of a subgraph H of G : \rightarrow coloring H, satisfying the strong condition in $G ; \chi_{s}^{\prime}\left(\left.H\right|_{G}\right)$.

Theorem 16 (Wang, Wang \& Wang [1])

Let $\{F, H\}$ be an edge-partition of a graph G. Then

$$
\chi_{\mathrm{st}}^{\prime}(G) \leq \chi_{\mathrm{st}}^{\prime}(F)+\chi_{s}^{\prime}\left(\left.H\right|_{G}\right)
$$

Planar Graphs

- Result for strong edge-coloring:

Theorem 17 (Faudree et al. [3])

For a planar graph G it holds

$$
\chi_{s}^{\prime}(G) \leq 4 \chi^{\prime}(G)
$$

Planar Graphs

Proof:

- Color edges of G properly: $\left(\chi^{\prime}(G)\right.$ colors $) \rightarrow$ coloring φ;

Planar Graphs

Proof:

- Color edges of G properly: $\left(\chi^{\prime}(G)\right.$ colors $) \rightarrow$ coloring φ;

■ For every color $i \in\left\{1, \ldots, \chi^{\prime}(G)\right\} \rightarrow M_{i}$ edges colored by i;

Planar Graphs

Proof:

- Color edges of G properly: $\left(\chi^{\prime}(G)\right.$ colors $) \rightarrow$ coloring φ;

■ For every color $i \in\left\{1, \ldots, \chi^{\prime}(G)\right\} \rightarrow M_{i}$ edges colored by i;

- G / M_{i} is planar \rightarrow 4-vertex-colorable \rightarrow coloring τ_{i};

Planar Graphs

Proof:

- Color edges of G properly: $\left(\chi^{\prime}(G)\right.$ colors $) \rightarrow$ coloring φ;

■ For every color $i \in\left\{1, \ldots, \chi^{\prime}(G)\right\} \rightarrow M_{i}$ edges colored by i;
■ G / M_{i} is planar \rightarrow 4-vertex-colorable \rightarrow coloring τ_{i};

- Vertices in G / M_{i} correspond to edges colored by i;

Planar Graphs

Proof:

- Color edges of G properly: $\left(\chi^{\prime}(G)\right.$ colors $) \rightarrow$ coloring φ;

■ For every color $i \in\left\{1, \ldots, \chi^{\prime}(G)\right\} \rightarrow M_{i}$ edges colored by i;

- G / M_{i} is planar \rightarrow 4-vertex-colorable \rightarrow coloring τ_{i};
- Vertices in G / M_{i} correspond to edges colored by i;
- Such edges at distance 2 have different colors in G / M_{i};

Planar Graphs

Proof:

- Color edges of G properly: $\left(\chi^{\prime}(G)\right.$ colors $) \rightarrow$ coloring φ;

■ For every color $i \in\left\{1, \ldots, \chi^{\prime}(G)\right\} \rightarrow M_{i}$ edges colored by i;

- G / M_{i} is planar \rightarrow 4-vertex-colorable \rightarrow coloring τ_{i};

■ Vertices in G / M_{i} correspond to edges colored by i;

- Such edges at distance 2 have different colors in G / M_{i};
- Coloring $e \in E(G)$ with $\left(\varphi(e), \tau_{i}(e)\right)$ gives strong edge-coloring with at most $\chi^{\prime}(G) \cdot 4$ colors.

Planar Graphs

Theorem 18 (Wang, Hu \& Wang [10])

Every planar graph G has an edge-decomposition into two forests F_{1}, F_{2} and a subgraph K such that $\Delta(K) \leq 10$ and $\Delta\left(F_{i}\right) \leq\lceil(\Delta(G)-9) / 2\rceil$ for $i \in\{1,2\}$.

Planar Graphs

Theorem 18 (Wang, Hu \& Wang [10])

Every planar graph G has an edge-decomposition into two forests F_{1}, F_{2} and a subgraph K such that $\Delta(K) \leq 10$ and $\Delta\left(F_{i}\right) \leq\lceil(\Delta(G)-9) / 2\rceil$ for $i \in\{1,2\}$.

- Using above and Theorem 16, currently the best bound for planar graphs can be obtained.

Theorem 19 (Wang, Wang \& Wang [11])

Let G be a planar graph. Then

$$
\chi_{\mathrm{st}}^{\prime}(G) \leq 2.75 \Delta(G)+18 ;
$$

Planar Graphs

- Similarly they proved more specific results (together with the result for outerplanar graphs from Theorem 15)

Theorem 20 (Wang, Wang \& Wang [11])

Let G be a planar graph. Then
(a) $\chi_{\mathrm{st}}^{\prime}(G) \leq 2.25 \Delta(G)+6$, if G is K_{4}-minor free;
(b) $\chi_{\mathrm{st}}^{\prime}(G) \leq 1.5 \Delta(G)+18$, if G has no 4 -cycles;
(c) $\chi_{\mathrm{st}}^{\prime}(G) \leq 1.5 \Delta(G)+13$, if G has girth at least 5 ;
(d) $\chi_{\mathrm{st}}^{\prime}(G) \leq 1.5 \Delta(G)+3$, if G has girth at least 8 .

Graphs with Bounded mad

- The list version of star edge-coloring was considered in a number of cases;

Graphs with Bounded mad

- The list version of star edge-coloring was considered in a number of cases;
- $\mathrm{ch}_{\mathrm{st}}^{\prime}(G)$: the list star chromatic index of G;

Graphs with Bounded mad

- The list version of star edge-coloring was considered in a number of cases;
- $\mathrm{ch}_{\mathrm{st}}^{\prime}(G)$: the list star chromatic index of G;

Theorem 21

Let G be a graph. Then
(a) $\operatorname{ch}_{\mathrm{st}}^{\prime}(G) \leq 2 \Delta(G)-1$ if $\operatorname{mad}(G)<7 / 3$ [6];
(b) $\operatorname{ch}_{\mathrm{st}}^{\prime}(G) \leq 2 \Delta(G)$ if $\operatorname{mad}(G)<5 / 2[6]$;
(c) $\operatorname{ch}_{\mathrm{st}}^{\prime}(G) \leq 2 \Delta(G)+1$ if $\operatorname{mad}(G)<8 / 3[6]$;
(d) $\operatorname{ch}_{\mathrm{st}}^{\prime}(G) \leq 2 \Delta(G)+2$ if $\operatorname{mad}(G)<14 / 5[5]$;
(e) $\operatorname{ch}_{\mathrm{st}}^{\prime}(G) \leq 2 \Delta(G)+3$ if $\operatorname{mad}(G)<3$ [5];

Planar Graphs

- In [5] and [6] the authors are asking: Is there a constant C such that for any planar graph $G \chi_{\mathrm{st}}^{\prime}(G) \leq 2 \Delta(G)+C$;

Planar Graphs

- In [5] and [6] the authors are asking: Is there a constant C such that for any planar graph $G \chi_{\mathrm{st}}^{\prime}(G) \leq 2 \Delta(G)+C$;
- We are not aware of any example needing 2Δ colors, in fact, we believe even the question below has an affirmative answer:

Question 22

Is there a constant C such that for any planar graph G it holds

$$
\chi_{\mathrm{st}}^{\prime}(G) \leq \frac{3}{2} \Delta(G)+C .
$$

... and very sparse graphs

Subcubic Graphs

- The most analyzed class are subcubic graphs

Subcubic Graphs

- The most analyzed class are subcubic graphs

Theorem 23 (Dvořák, Mohar, Šámal [2])

(a) If G is a subcubic graph, then $\chi_{\mathrm{st}}^{\prime}(G) \leq 7$.
(b) If G is a simple cubic graph, then $\chi_{\mathrm{st}}^{\prime}(G) \geq 4$, and the equality holds if and only if G covers the graph of the 3-cube.

Subcubic Graphs

- The most analyzed class are subcubic graphs

Theorem 23 (Dvořák, Mohar, Šámal [[])

(a) If G is a subcubic graph, then $\chi_{\mathrm{st}}^{\prime}(G) \leq 7$.
(b) If G is a simple cubic graph, then $\chi_{\mathrm{st}}^{\prime}(G) \geq 4$, and the equality holds if and only if G covers the graph of the 3-cube.

Conjecture 24 (Dvořák, Mohar, Šámal [] $)$
If G is a subcubic graph, then $\chi_{\mathrm{st}}^{\prime}(G) \leq 6$.

Subcubic Graphs

■ Only three known 2-connected graphs needing 6 colors:

$K_{3,3}$

$\overline{C_{6}}$

$$
K_{4}+v
$$

Subcubic Graphs

- A number of partial results:

Theorem 25

Let G be a graph with maximum degree 3. Then
(a) $\chi_{\mathrm{st}}^{\prime}(G) \leq 5$ if G is outerplanar [1];
(b) $\chi_{\mathrm{st}}^{\prime}(G) \leq 5$ if $\operatorname{mad}(G)<\frac{12}{5}$ [7];
(c) $\chi_{\mathrm{st}}^{\prime}(G) \leq 5$ if $\operatorname{mad}(G)<\frac{7}{3}$ (in the list setting!) [4];
(d) $\chi_{\mathrm{st}}^{\prime}(G) \leq 6$ if $\operatorname{mad}(G)<\frac{5}{2}$ (in the list setting!) [4].

Subcubic Graphs - List Version

Question 26 (Dvořák, Mohar, Šámal [[])

Is it true that $\mathrm{ch}_{\mathrm{st}}^{\prime}(G) \leq 7$ for every subcubic graph G ? (Perhaps even ≤ 6 ?)

Subcubic Graphs - List Version

Question 26 (Dvořák, Mohar, Šámal [[])

Is it true that $\mathrm{ch}_{\mathrm{st}}^{\prime}(G) \leq 7$ for every subcubic graph G? (Perhaps even ≤ 6 ?)

Theorem 27 (BL, Mockovčiaková \& Soták [9])
For every subcubic graph G, it holds

$$
\operatorname{ch}_{\mathrm{st}}^{\prime}(G) \leq 7
$$

Another nice class

Hypercubes

- In Q_{n}, the edges in every dimension i can be divided in two sets, A_{i} and B_{i} such that the edges in each set are at distance at least 3;

Hypercubes

- In Q_{n}, the edges in every dimension i can be divided in two sets, A_{i} and B_{i} such that the edges in each set are at distance at least 3;
$\square \rightarrow Q_{n}=Q_{n-1} \square K_{2}$, so $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{n-1}\right)+2$;

Hypercubes

- In Q_{n}, the edges in every dimension i can be divided in two sets, A_{i} and B_{i} such that the edges in each set are at distance at least 3;
$\square \rightarrow Q_{n}=Q_{n-1} \square K_{2}$, so $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{n-1}\right)+2$;
■ Recursively, $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{j}\right)+2(n-j)$, for any j;

Hypercubes

- In Q_{n}, the edges in every dimension i can be divided in two sets, A_{i} and B_{i} such that the edges in each set are at distance at least 3;
■ $\rightarrow Q_{n}=Q_{n-1} \square K_{2}$, so $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{n-1}\right)+2$;
- Recursively, $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{j}\right)+2(n-j)$, for any j;

■ Easy: $\chi_{\mathrm{st}}^{\prime}\left(Q_{1}\right)=1, \chi_{\mathrm{st}}^{\prime}\left(Q_{2}\right)=3, \chi_{\mathrm{st}}^{\prime}\left(Q_{3}\right)=4$;

Hypercubes

- In Q_{n}, the edges in every dimension i can be divided in two sets, A_{i} and B_{i} such that the edges in each set are at distance at least 3;
■ $\rightarrow Q_{n}=Q_{n-1} \square K_{2}$, so $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{n-1}\right)+2$;
- Recursively, $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{j}\right)+2(n-j)$, for any j;

■ Easy: $\chi_{\mathrm{st}}^{\prime}\left(Q_{1}\right)=1, \chi_{\mathrm{st}}^{\prime}\left(Q_{2}\right)=3, \chi_{\mathrm{st}}^{\prime}\left(Q_{3}\right)=4$;

- Less easy (by computer): $\chi_{\mathrm{st}}^{\prime}\left(Q_{4}\right)=6, \chi_{\mathrm{st}}^{\prime}\left(Q_{5}\right)=8$;

Hypercubes

- In Q_{n}, the edges in every dimension i can be divided in two sets, A_{i} and B_{i} such that the edges in each set are at distance at least 3;
■ $\rightarrow Q_{n}=Q_{n-1} \square K_{2}$, so $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{n-1}\right)+2$;
■ Recursively, $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{j}\right)+2(n-j)$, for any j;
■ Easy: $\chi_{\mathrm{st}}^{\prime}\left(Q_{1}\right)=1, \chi_{\mathrm{st}}^{\prime}\left(Q_{2}\right)=3, \chi_{\mathrm{st}}^{\prime}\left(Q_{3}\right)=4$;
- Less easy (by computer): $\chi_{\mathrm{st}}^{\prime}\left(Q_{4}\right)=6, \chi_{\mathrm{st}}^{\prime}\left(Q_{5}\right)=8$;
- $9 \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{6}\right) \leq 10,10 \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{7}\right) \leq 12$

Hypercubes

- In Q_{n}, the edges in every dimension i can be divided in two sets, A_{i} and B_{i} such that the edges in each set are at distance at least 3;
$■ \rightarrow Q_{n}=Q_{n-1} \square K_{2}$, so $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{n-1}\right)+2$;
■ Recursively, $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{j}\right)+2(n-j)$, for any j;
■ Easy: $\chi_{\mathrm{st}}^{\prime}\left(Q_{1}\right)=1, \chi_{\mathrm{st}}^{\prime}\left(Q_{2}\right)=3, \chi_{\mathrm{st}}^{\prime}\left(Q_{3}\right)=4$;
- Less easy (by computer): $\chi_{\mathrm{st}}^{\prime}\left(Q_{4}\right)=6, \chi_{\mathrm{st}}^{\prime}\left(Q_{5}\right)=8$;

■ $9 \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{6}\right) \leq 10,10 \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{7}\right) \leq 12 \rightarrow Q_{7}$ looks promising;

Hypercubes

- In Q_{n}, the edges in every dimension i can be divided in two sets, A_{i} and B_{i} such that the edges in each set are at distance at least 3;
■ $\rightarrow Q_{n}=Q_{n-1} \square K_{2}$, so $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{n-1}\right)+2$;
■ Recursively, $\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right) \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{j}\right)+2(n-j)$, for any j;
■ Easy: $\chi_{\mathrm{st}}^{\prime}\left(Q_{1}\right)=1, \chi_{\mathrm{st}}^{\prime}\left(Q_{2}\right)=3, \chi_{\mathrm{st}}^{\prime}\left(Q_{3}\right)=4$;
- Less easy (by computer): $\chi_{\mathrm{st}}^{\prime}\left(Q_{4}\right)=6, \chi_{\mathrm{st}}^{\prime}\left(Q_{5}\right)=8$;

■ $9 \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{6}\right) \leq 10,10 \leq \chi_{\mathrm{st}}^{\prime}\left(Q_{7}\right) \leq 12 \rightarrow Q_{7}$ looks promising;

Conjecture 28

There is a constant C such that for every positive n

$$
\chi_{\mathrm{st}}^{\prime}\left(Q_{n}\right)=2 n-C \log (n) .
$$

Further open problems

Open Problems

Question 29 (Dvořák, Mohar, Šámal, 2013)
Is it true that $\operatorname{ch}_{\mathrm{st}}^{\prime}(G)=\chi_{\mathrm{st}}^{\prime}(G)$ for every graph G ?

Open Problems

Question 29 (Dvořák, Mohar, Šámal, 2013)
Is it true that $\operatorname{ch}_{\mathrm{st}}^{\prime}(G)=\chi_{\mathrm{st}}^{\prime}(G)$ for every graph G ?

- Find a method, which can successfully use the fact that a graph (a) is bipartite,

Open Problems

Question 29 (Dvořák, Mohar, Šámal, 2013)

Is it true that $\operatorname{ch}_{\mathrm{st}}^{\prime}(G)=\chi_{\mathrm{st}}^{\prime}(G)$ for every graph G ?

- Find a method, which can successfully use the fact that a graph (a) is bipartite, or (b) has large girth;

Open Problems

Question 29 (Dvořák, Mohar, Šámal, 2013)

Is it true that $\operatorname{ch}_{\mathrm{st}}^{\prime}(G)=\chi_{\mathrm{st}}^{\prime}(G)$ for every graph G ?

- Find a method, which can successfully use the fact that a graph (a) is bipartite, or (b) has large girth;
- Is it true that $\chi_{\mathrm{st}}^{\prime}(G) \leq 5$ for all 2-connected subcubic graphs except a finite number of exceptions?

Open Problems

Question 29 (Dvořák, Mohar, Šámal, 2013)

Is it true that $\operatorname{ch}_{\mathrm{st}}^{\prime}(G)=\chi_{\mathrm{st}}^{\prime}(G)$ for every graph G ?

- Find a method, which can successfully use the fact that a graph (a) is bipartite, or (b) has large girth;
- Is it true that $\chi_{\mathrm{st}}^{\prime}(G) \leq 5$ for all 2-connected subcubic graphs except a finite number of exceptions?
- Is above true at least for bipartite ones? Or the ones with large girth?

Merci!

References

I

囯 Bezegová，L．，Lužar，B．，Mockovčiaková，M．，Soták，R．，and Škrekovski，R．
Star edge coloring of some classes of graphs．
J．Graph Theory 81 （2016），73－82．
圊 Dvořák，Z．，Mohar，B．，and Šámal，R．
Star chromatic index．
J．Graph Theory 72 （2013），313－326．
國 Faudree，R．J．，Gyárfás，A．，Schelp，R．H．，and Tuza，Z．
The strong chromatic index of graphs．
Ars Combin．29B（1990），205－211．

References

囯 Kerdjoudj, S., Kostochka, A., and Raspaud, A.
List star edge-coloring of subcubic graphs.
Discuss. Math. Graph Theory 38 (2018), 1037-1054.
Kerdjoudj, S., Pradeep, K., and Raspaud, A.
List star chromatic index of sparse graphs.
Discrete Math. 341 (2018), 1835-1849.
Kerdjoudj, S., and Raspaud, A.
List star edge coloring of sparse graphs.
Discrete Appl. Math. 238 (2018), 115-125.
囯 Lei, H., Shi, Y., Song, Z.-X., and Wang, T.
Star 5-edge-colorings of subcubic multigraphs.
Discrete Math. 341 (2018), 950-956.

References

III

圊 Liu, X.-S., and Deng, K.
An upper bound on the star chromatic index of graphs with $\Delta \geq 7$.
J. Lanzhou Univ. (Nat. Sci.) 44 (2008), 94-95.

Ružar, B., Mockovčiaková, M., and Soták, R.
Note on list star edge-coloring of subcubic graphs.
J. Graph Theory 90, 3 (2019), 304-310.

Wang, Y., Hu, X., and Wang, W.
A note on the linear 2-arboricity of planar graphs.
Discrete Math. 340 (2017), 1449-1455.
目 Wang, Y., Wang, W., and Wang, Y.
Edge-partition and star chromatic index.
Appl. Math. Comput. 333 (2018), 480-489.

